留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声诱导提升钻井液降滤失剂褐煤树脂性能

彭波 郭文宇 牟炜荣 李玉凤

彭波,郭文宇,牟炜荣,等. 超声诱导提升钻井液降滤失剂褐煤树脂性能[J]. 钻井液与完井液,2023,40(4):481-486 doi: 10.12358/j.issn.1001-5620.2023.04.010
引用本文: 彭波,郭文宇,牟炜荣,等. 超声诱导提升钻井液降滤失剂褐煤树脂性能[J]. 钻井液与完井液,2023,40(4):481-486 doi: 10.12358/j.issn.1001-5620.2023.04.010
PENG Bo, GUO Wenyu, MU Weirong, et al.Improving the performance of filter loss reducer lignite resin with ultrasonic induction[J]. Drilling Fluid & Completion Fluid,2023, 40(4):481-486 doi: 10.12358/j.issn.1001-5620.2023.04.010
Citation: PENG Bo, GUO Wenyu, MU Weirong, et al.Improving the performance of filter loss reducer lignite resin with ultrasonic induction[J]. Drilling Fluid & Completion Fluid,2023, 40(4):481-486 doi: 10.12358/j.issn.1001-5620.2023.04.010

超声诱导提升钻井液降滤失剂褐煤树脂性能

doi: 10.12358/j.issn.1001-5620.2023.04.010
基金项目: 2019年度绵阳师范学院校级科研项目“超声辐照黏土基复合胶体在水基钻井液中的应用”(QD2019A09);2021年度四川省科技厅应用基础研究项目“超声诱导黏土基水溶胶物理/化学反应调控钻井液性能”(2021YJ0356);2022年度油气藏地质及开发工程国家重点实验室开放基金“钻井液用聚醚胺接枝纳米氧化铝的制备及超声诱导下性能提升研究”(PLN2022-22)。
详细信息
    作者简介:

    彭波,教授级高级工程师,博士/博士后,1980年生,毕业于四川大学高分子科学与工程专业,现在从事油田高分子材料相关科研工作。电话15882778350;E-mail:bo.peng1980@qq.com。

    通讯作者:

    郭文宇,教授,电话15882807951;E-mail:823121642@qq.com。

  • 中图分类号: TE254.4

Improving the Performance of Filter Loss Reducer Lignite Resin with Ultrasonic Induction

  • 摘要: 按照SY/T 5679—2017标准配制褐煤树脂-膨润土水基钻井液。在高搅工序后将超声波输入到钻井液中,考察超声振动对钻井液各种胶体性能的影响,目的是探究一种配浆新方法,用于提升现存处理剂性能。实验结果显示,超声振动能导致钻井液滤失量和滤失速率显著降低,随着超声波功率或作用时间的增加,滤失量持续降低;除此之外,超声振动轻微降低了钻井液的表观黏度;在20 kHz、850 W和14 min的超声条件下,淡水钻井液API和HTHP滤失量的最大降幅分别为26.7%和27.6%;盐水钻井液中压和高温高压滤失量的最大降幅分别为29.5%和32.7%;滤饼厚度也在超声振动后降低30%~35%。通过粒径分析、吸附实验和扫描电镜观察发现,超声振动能降低膨润土颗粒平均尺寸,增加褐煤树脂在膨润土上的吸附量,从而导致钻井液在压差作用下形成更加致密的薄滤饼。研究表明,超声辅助配浆技术利于提高褐煤树脂及其钻井液的滤失性能。声空化机制负责解释上述所有现象。

     

  • 图  1  钻井液中压滤失量随滤失时间的变化

    图  2  钻井液高温高压滤失量随滤失时间的变化

    注:实线为淡水钻井液,虚线为盐水钻井液。

    图  3  滤饼表面SEM照片

    图  4  膨润土颗粒尺寸分布图

    注:实线为淡水钻井液,虚线为盐水钻井液。

    图  5  褐煤树脂在膨润土颗粒上的吸附量

    表  1  超声振动对钻井液表观黏度的影响

    超声波
    功率/W
    超声波作
    用时间/min
    AV/mPa·s
    淡水钻井液盐水钻井液
    0013.50±0.5031.00±0.80
    350713.20±0.6130.00±0.50
    850712.80±0.6029.00±0.77
    8501412.43±0.5328.24±0.65
    下载: 导出CSV

    表  2  滤饼的厚度

    钻井液超声波
    功率/W
    超声波作
    用时间/min
    滤饼厚度/mm
    APIHTHP
    淡水000.60±0.096.12±1.03
    850140.41±0.064.19±0.84
    盐水003.00±0.128.20±1.30
    850142.10±0.215.35±1.20
    下载: 导出CSV
  • [1] 王平全,杨彪,李春霞. 多功能钻井液处理剂SPAMH的实验研究[J]. 西南石油学院学报,1999,21(3):62-65.

    WANG Pingquan, YANG Biao, LI Chunxia. Experimental study of multi-functional mud additive SPAMH[J]. Journal of Southwest Petroleum Institute, 1999, 21(3):62-65.
    [2] 马腾飞,周宇,李志勇,等. 新型低伤害高性能微泡沫钻井液性能评价与现场应用[J]. 油田化学,2021,38(4):571-579. doi: 10.19346/j.cnki.1000-4092.2021.04.001

    MA Tengfei, ZHOU Yu, LI Zhiyong, et al. Evaluation and field application of new microfoam drilling fluid with low-damage and high-performance[J]. Oilfield Chemistry, 2021, 38(4):571-579. doi: 10.19346/j.cnki.1000-4092.2021.04.001
    [3] 黄桃,樊相生,陶卫东,等. 超高密度复合盐水钻井液流变性调控及应用[J]. 钻井液与完井液,2020,37(2):153-159. doi: 10.3969/j.issn.1001-5620.2020.02.004

    HUANG Tao, FAN Xiangsheng, TAO Weidong, et al. Rheology control and application of ultra-high-density compound brine drilling fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):153-159. doi: 10.3969/j.issn.1001-5620.2020.02.004
    [4] 辛策花. 褐煤组成对钻井液性能的影响及其改性方法的研究[D]. 济南: 齐鲁工业大学, 2014.

    XIN Cehua. Effect of lignite composition on the properties of drilling fluid and their modified method [D]. Jinan: Qilu University of Technology, 2014.
    [5] ZHANG W Y, SHEN H, WANG Y J, et al. Grafting lignite with sulformethal phenoldehy resin and their performance in controlling rheological and filtration properties of water-bentonite suspensions at high temperatures[J]. Journal of Petroleum Science and Engineering, 2016, 144:84-90. doi: 10.1016/j.petrol.2016.03.004
    [6] SHEN H, ZHANG W Y. Synthesis of lignite graft polycondensate as drilling fluid additive and its influence on the properties of water-bentonite suspensions[J]. Chemistry and Technology of Fuels and Oils, 2018, 53(6):922-932. doi: 10.1007/s10553-018-0882-2
    [7] DIDENKO Y T, MCNAMARA W B, SUSLICK K S. Molecular emission from single-bubble sonoluminescence[J]. Nature, 2000, 407(6806):877-879. doi: 10.1038/35038020
    [8] CCHATEL G, NOVIKOVA L, PETIT S. How efficiently combine sonochemistry and clay science?[J]. Applied Clay Science, 2016, 119(Part 2):193-201.
    [9] GÜRSOY Y H, KURAMA H. Ultrasonic treatment and its applicability for the selective treatment of borax clayey waste sludge[J]. Physicochemical Problems of Mineral Processing, 2021, 57(5):80-90.
    [10] SAVUN-HEKIMOĞLU B, INCE N H. Sonochemical and sonocatalytic destruction of methylparaben using raw, modified and SDS-intercalated particles of a natural clay mineral[J]. Ultrasonics Sonochemistry, 2019, 54:233-240. doi: 10.1016/j.ultsonch.2019.01.034
    [11] ABEDI E, AMIRI M J, SAYADI M. The potential use of ultrasound-assisted bleaching in removing heavy metals and pigments from soybean oil using kinetic, thermodynamic and equilibrium modeling[J]. Environmental Science and Pollution Research, 2021, 28(36):49833-49851. doi: 10.1007/s11356-021-14180-2
    [12] FATIMAH I, NURILLAHI R, SAHRONI I, et al. Sonocatalytic degradation of rhodamine B using tin oxide/montmorillonite[J]. Journal of Water Process Engineering, 2020, 37:101418. doi: 10.1016/j.jwpe.2020.101418
    [13] GUO W Y, PENG B. Ultrasonic oscillations induced property development of water-bentonite suspension containing sulfonated wood coal[J]. Journal of Petroleum Exploration and Production Technology, 2021, 11(5):2179-2190. doi: 10.1007/s13202-021-01166-6
    [14] GUO W Y, PENG B. Highly effective utilization of vinyl copolymer as filtrate reducer of water-bentonite drilling fluid under ultrasonic oscillations[J]. Journal of Applied Polymer Science, 2022, 139(12):51831. doi: 10.1002/app.51831
    [15] HUANG W A, WANG J W, LEI M, et al. Investigation of regulating rheological properties of water-based drilling fluids by ultrasound[J]. Petroleum Science, 2021, 18(6):1698-1708. doi: 10.1016/j.petsci.2021.09.006
    [16] 郭文宇,彭波. 超声辅助配制磺化褐煤-黏土钻井液及其性能研究[J]. 精细石油化工,2021,38(4):18-22. doi: 10.3969/j.issn.1003-9384.2021.04.005

    GUO Wenyu, PENG Bo. Ultrasound-assisted preparation of sulfonated wood coal-bentonite drilling fluid and its property study[J]. Speciality Petrochemicals, 2021, 38(4):18-22. doi: 10.3969/j.issn.1003-9384.2021.04.005
    [17] EALIAS A M, SARAVANAKUMAR M P. A critical review on ultrasonic-assisted dye adsorption: mass transfer, half-life and half-capacity concentration approach with future industrial perspectives[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(21):1959-2015. doi: 10.1080/10643389.2019.1601488
    [18] LORIMER J P, MASON T J, CUTHBERT T C, et al. Effect of ultrasound on the degradation of aqueous native dextran[J]. Ultrasonics Sonochemistry, 1995, 2(1):S55-S57. doi: 10.1016/1350-4177(94)00013-I
    [19] NGUYEN T Q, LIANG Q Z, KAUSCH H H. Kinetics of ultrasonic and transient elongational flow degradation: A comparative study[J]. Polymer, 1997, 38(15):3783-3793. doi: 10.1016/S0032-3861(96)00950-0
    [20] 骆小虎. 抗高温高密度钻井液在印尼LOFIN-2井的研究和应用[J]. 钻井液与完井液,2019,36(1):60-64. doi: 10.3969/j.issn.1001-5620.2019.01.012

    LUO Xiaohu. Study on a high temperature high density drilling fluid used on the well LOFIN-2, Indonesia[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):60-64. doi: 10.3969/j.issn.1001-5620.2019.01.012
    [21] 彭波. 超声波作用对丙烯基塑性体及其共混/复合体系结构与性能的影响[D]. 成都: 四川大学, 2007.

    PENG Bo. Ultrasound induced development of structure and properties of propylene based plastomer and its blends [D]. Chengdu: Sichuan University, 2007.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  163
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-26
  • 修回日期:  2023-03-01
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回