An Environmentally Friendly Non-foaming Anti-water Blocking Agent
-
摘要: 为提高钻井液用防水锁剂的抑泡和环保性能,以海藻酸、羟乙基乙二胺(AEEA)、环氧氯丙烷(ECH)和季戊四醇(PETP)为原料,合成了一种天然改性产物作为防水锁剂SMFS-1。借助傅里叶红外光谱(FT-IR)仪进行了分子结构表征。防水锁性能测试结果显示,加入SMFS-1后水溶液的表面张力能够降低至25 mN/m以内,减小岩心自吸水体积,可促使岩石表面由亲水向中性转变,提高岩心渗透率恢复值至80%以上。SMFS-1抗温可达120 ℃,吸附性能优异,无起泡效应,对钻井液的流变性和滤失性能影响小。环保性能测试结果显示,SMFS-1的半致死浓度(EC50)为32 250 mg/L,生物降解性评价指标(Y)为17.36,达到排放标准,易被生物降解。Abstract: In order to improve the bubble inhibition and environmental protection performance of the waterproof locking agent for drilling fluid, a natural modified product SMFS-1 was synthesized from alginic acid, 2-(2-aminoethylamino)ethanol (AEEA), epichlorohydrin (ECH) and pentaerythritol (PETP) as raw materials. The molecular structure was characterized by Fourier infrared spectrometer (FT-IR). The test results of waterproof lock performance show that the surface tension of aqueous solution can be reduced to less than 25 mN/m after the addition of SMFS-1, which can reduce the volume of core self-absorption, promote the change of rock surface from hydrophilic to neutral, and increase the recovery value of core permeability to more than 80%. SMFS-1 is resistant to temperature up to 120 ℃, has excellent adsorption performance, no bubbling effect, and has little impact on rheological properties and filtration properties of drilling fluid. The environmental performance test results showed that the semi-lethal concentration (EC50) of SMFS-1 was 32,250 mg/L, and the biodegradability evaluation index (Y) was 17.36, which met the emission standard and was easy to biodegrade.
-
Key words:
- Anti-water blocking agent /
- Drilling fluid /
- Water-lock damage /
- Non-foaming /
- Environmental performance
-
表 1 不同温度下防水锁剂的表面张力
防水锁剂 表面张力/(mN·m−1) 25 ℃ 50 ℃ 75 ℃ SMFS-1 25.00 25.14 26.75 Tween80 25.13 32.63 40.28 OBS 20.04 27.40 33.58 SL 36.79 39.90 43.24 C-201 30.08 35.37 41.08 表 2 不同温度下防水锁剂的接触角
防水锁剂 接触角/(°) 25 ℃ 50 ℃ 75 ℃ 蒸馏水 38.97 38.98 38.97 SMFS-1 81.62 81.14 80.00 Tween80 64.21 61.70 57.17 OBS 86.22 77.00 72.47 SL 50.50 47.39 45.20 C-201 72.19 67.26 64.18 表 3 不同温度下岩心渗透率恢复率
试剂 渗透率恢复率/% 25 ℃ 50 ℃ 75 ℃ 蒸馏水 31.19 33.70 35.80 SMFS-1 81.25 83.20 85.03 Tween80 60.25 61.38 63.91 OBS 73.28 74.63 75.21 SL 53.44 55.81 56.75 C-201 59.46 60.12 60.31 表 4 SMFS-1抗温能力测试
T老化/℃ 表面张力/(mN·m−1) V自吸水/mL 接触角/(°) S/% 常温 25.00 0.130 81.62 81.25 80 25.04 0.132 81.27 81.20 100 25.20 0.134 80.84 80.37 120 26.17 0.141 78.90 77.84 140 35.58 0.250 58.47 54.63 表 5 SMFS-1加入对聚磺钻井液流变与失水性能的影响
SMFS-1/
%实验
条件AV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL0 常温 22.0 6.5 2.0/7.5 100 ℃、16 h 21.0 6.0 2.0/7.0 2.8 12.0 120 ℃、16 h 19.5 5.0 1.5/6.0 3.2 13.2 0.3 常温 22.0 6.5 2.0/7.5 100 ℃、16 h 21.5 6.0 2.0/7.0 2.6 11.8 120 ℃、16 h 20.0 5.5 1.5/6.0 3.2 13.2 0.6 常温 22.0 6.5 2.0/7.0 100 ℃、16 h 21.0 6.0 2.0/7.0 2.6 11.8 120 ℃、16 h 20.0 5.0 1.5/6.0 3.4 13.4 表 6 SMFS-1和常规处理剂的生物毒性和生物降解性
试剂 EC50/(mg·L−1) Y SMFS-1 32 250 17.36 Tween80 16 500 28.90 OBS 9180 31.96 SL 39 770 17.24 C-201 21 140 19.20 -
[1] WANG C W, SU Y L, WANG W D, et al. Water blocking damage evaluation and mitigation in tight gas reservoirs[J]. Energy Fuels, 2022, 36(18):10934-10944. doi: 10.1021/acs.energyfuels.2c02261 [2] LI X J, ZHANG Q J, LIU P, et al. Investigation on the microscopic damage mechanism of fracturing fluids to low-permeability sandstone oil reservoir by nuclear magnetic resonance[J]. Journal of Petroleum Science and Engineering, 2022, 209:109821. doi: 10.1016/j.petrol.2021.109821 [3] 李恒. 页岩气储层保护钻井液研究[D]. 青岛: 中国石油大学(华东), 2018.LI Heng. Research of shale gas research protection fluid [D]. Qingdao: China University of Petroleum(East China), 2018. [4] 胡友林,乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报,2014,39(6):1107-1111. doi: 10.13225/j.cnki.jccs.2013.1024HU Youlin, WU Xiaoming. Research on coalbed methane reservoir blocking damage mechanism and anti-water blocking[J]. Journal of China Coal Society, 2014, 39(6):1107-1111. doi: 10.13225/j.cnki.jccs.2013.1024 [5] FAN H M, LYU J, ZHAO J B, et al. Evaluation method and treatment effectiveness analysis of anti-water blocking agent[J]. Journal of Natural Gas Science and Engineering, 2016, 33:1374-1380. doi: 10.1016/j.jngse.2016.06.052 [6] 安一梅,李丽华,赵凯强,等. 低渗透油气藏用防水锁剂体系的制备与性能评价[J]. 油田化学,2021,38(1):19-23.AN Yimei, LI Lihua, ZHAO Kaiqiang, et al. Preparation and performance evaluation of waterproof lock agent system for low permeability oil and gas reservoir[J]. Oilfield Chemistry, 2021, 38(1):19-23. [7] 李昕潼,郑文武,刘福,等. 一种致密油气层保护剂的研制与应用[J]. 钻井液与完井液,2022,39(5):565-572.LI Xintong, ZHENG Wenwu, LIU Fu, et al. Development and application of a protective agent for tight oil and gas reservoirs[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):565-572. [8] 郭璇,孙金声,吕开河,等. 低渗透气藏有机硅防水锁剂的制备与性能评价[J]. 钻井液与完井液,2023,40(2):156-162. doi: 10.12358/j.issn.1001-5620.2023.02.002GUO Xuan, SUN Jinsheng, LYU Kaihe, et al. Preparation and evaluation of an organosilicon water block inhibitor for low permeability gas reservoirs[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):156-162. doi: 10.12358/j.issn.1001-5620.2023.02.002 [9] 张洁, 姚旭洋, 王双威, 等. 一种钻井液用环保型有机硅防水锁剂及其制备方法和应用: 中国, 108485616[P]. 2019-09-04.ZHANG Jie, YAO Xuyang, WANG Shuangwei, et al. An environmentally friendly silicone waterproof locking agent for drilling fluid and its preparation method and application: 108485616[P]. 2019-09-04. [10] 凡帆,刘伟,贾俊. 长北区块无土相防水锁低伤害钻井液技术[J]. 石油钻探技术,2019,47(5):34-39.FAN Fan, LIU Wei, JIA Jun. Clay-Free Drilling Fluid with Anti-Water Locking and Low Damage Performance Used in the Changbei Block[J]. Petroleum Drilling Techniques, 2019, 47(5):34-39. [11] 褚奇, 李涛, 刘匡晓, 等. 钻井液用有机处理剂吸附性能的测定方法: 中国, 105277657[P]. 2018-02-09.CHU Qi, LI Tao, LIU Kuangxiao, et al. Determination of adsorption properties of organic additives for drilling fluids: China, 105277657[P]. 2018-02-09. [12] 邢希金,王荐,何松,等. 关于我国环保钻井液标准的探讨[J]. 石油工业技术监督,2018,34(5):18-22. doi: 10.3969/j.issn.1004-1346.2018.05.007XING Xijin, WANG Jian, HE Song, et al. Discussion on the standard of environmental drilling fluid[J]. Technology Supervision in Petroleum Industry, 2018, 34(5):18-22. doi: 10.3969/j.issn.1004-1346.2018.05.007