留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

储层友好型钻井液用超微四氧化三锰

王龙 方静 董秀民 王金树 方俊伟 耿云鹏 张建军 徐同台

王龙,方静,董秀民,等. 储层友好型钻井液用超微四氧化三锰[J]. 钻井液与完井液,2023,40(4):467-474 doi: 10.12358/j.issn.1001-5620.2023.04.008
引用本文: 王龙,方静,董秀民,等. 储层友好型钻井液用超微四氧化三锰[J]. 钻井液与完井液,2023,40(4):467-474 doi: 10.12358/j.issn.1001-5620.2023.04.008
WANG Long, FANG Jing, DONG Xiumin, et al.Reservoir friendly ultra-fine manganese tetroxide for drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(4):467-474 doi: 10.12358/j.issn.1001-5620.2023.04.008
Citation: WANG Long, FANG Jing, DONG Xiumin, et al.Reservoir friendly ultra-fine manganese tetroxide for drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(4):467-474 doi: 10.12358/j.issn.1001-5620.2023.04.008

储层友好型钻井液用超微四氧化三锰

doi: 10.12358/j.issn.1001-5620.2023.04.008
基金项目: 中石化科研项目“顺北一区5号断裂带提质提速钻完井技术研究”(P20002)。
详细信息
    作者简介:

    王龙,高级工程师,硕士,1982年生,毕业于中国石油大学(华东),现从事钻井、完井方面的研究和管理工作。E-mail:wanglong.xbsj@sinopec.com。

    通讯作者:

    王金树,E-mail:fangj.xbsj@sinopec.com。

  • 中图分类号: TE254.4

Reservoir Friendly Ultra-fine Manganese Tetroxide for Drilling Fluids

  • 摘要: 在顺北油田深井、超深井钻井中,重晶石加重高密度钻井液体系存在流变参数调节难、沉降稳定性差、储层固相颗粒损害严重等问题。国外微锰(Micromax)在钻井液中的性能表现良好,但其技术垄断和高使用成本限制了其在国内推广应用。为研发高性价比国产微锰产品、构建储层友好型钻井液体系,采用锰矿法制备出钻井液用微锰(DFMT01),并进行结构表征和性能评价,测试了顺北区块高密度聚磺钻井液体系的性能及泥饼酸溶效果,讨论了含锰废液的循环利用。结果表明,DFMT01理化性质良好,密度大于4.7 g/cm3,酸溶率大于99%,D50为1.17 μm,颗粒球形度为0.967,均与国外同类产品相当;该产品加重的聚磺钻井液体系在流变性、滤失性、沉降稳定性、冲蚀性和储层保护特性均达到或超过Micromax加重体系。确定了“碳酸钙中和沉淀-硫酸回收锰离子-混凝法处理废水”处理高浓度酸性含锰废液的组合工艺,处理后水中锰的质量浓度为0.45 mg/L、固体悬浮物为10 mg/L,达到一级标准要求,可实现DFMT01生产、使用和处理的闭环利用。该产品性能优良,成本低,具有非常广阔的推广应用价值。

     

  • 图  1  DFMT01的XRD图谱

    图  2  DFMT01和Micromax扫描电镜(SEM)微观结构

    图  3  DFMT01和Micromax静态图像

    图  4  不同加重剂加重钻井液对叶片的冲蚀速率

    图  5  不同加重剂钻井液体系的沉降因子

    图  6  不同酸液对两种加重钻井液泥饼的酸浸效果

    图  7  10%甲酸常温浸泡泥饼4 h后   外观(左)及切面形貌(右)

    图  8  室温下泥饼表面和切面微观结构及EDS能谱图

    图  9  90 ℃下泥饼表面微观结构及EDS能谱图

    图  10  DFMT01加重剂酸化废液处理与循环利用工艺流程

    表  1  DFMT01和Micromax样品X射线荧光分析 (%)

    加重剂Mn3O4Fe2O3SiO2CaOMgOSO3
    DFMT0192.6293.4450.1371.6830.1690.362
    Micromax96.6722.8020.0650.0230.1840.019
    下载: 导出CSV

    表  2  DFMT01和Micromax样品理化性能

    加重剂ρ/
    g·cm−3
    酸溶率/
    %
    莫氏硬度圆球度粒径分布/μm
    D10D50D90
    DFMT014.7799.25.50.9670.531.173.79
    Micromax4.7899.45.50.9770.481.013.51
    下载: 导出CSV

    表  3  加重剂单剂和加重钻井液体系的磁性评价

    加重剂磁性/GS磁性物/%泥饼黏附系数泥饼磁性/GS
    DFMT010.60.0780.06120.5
    Micromax0.80.1020.06990.7
    重晶石0.60.0890.10510.6
    铁矿粉20.26.1510.203513.7
      注:钻井液体系为1.60 g/cm3的聚磺钻井液体系,测试条件为180 ℃热滚16 h。
    下载: 导出CSV

    表  4  加重剂对聚磺钻井液流变性和滤失性的影响

    加重剂1.6 g/cm32.0 g/cm32.4 g/cm3
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLHTHP/
    mL
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLHTHP/
    mL
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLHTHP/
    mL
    DFMT0154.04014.013.066392714.8110753516.4
    Micromax51.03714.013.663422114.0102723016.2
    重晶石43.53310.510.280542611.612.2
    铁矿粉38.02612.014.448301815.213.2
      注:FLHTHP在180 ℃、3.5 MPa下测定。
    下载: 导出CSV
  • [1] 王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8-15.

    WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Key technologies for the safe drilling of fractured carbonate gas reservoirs in the shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2020, 48(3):8-15.
    [2] 邱春阳,张翔宇,赵红香,等. 顺北区块深层井壁稳定钻井液技术[J]. 天然气勘探与开发,2021,44(2):81-86.

    QIU Chunyang, ZHANG Xiangyu, ZHAO Hongxiang, et al. Drilling-fluid system for deep borehole stability in Shunbei block, Tarim basin[J]. Natural Gas Exploration and Development, 2021, 44(2):81-86.
    [3] 刘彪,潘丽娟,张俊,等. 顺北区块超深小井眼水平井优快钻井技术[J]. 石油钻探技术,2016,44(6):11-16.

    LIU Biao, PAN Lijuan, ZHANG Jun, et al. The optimized drilling techniques used in ultra-deep and slim-hole horizontal wells of the Shunbei block[J]. Petroleum Drilling Techniques, 2016, 44(6):11-16.
    [4] 潘谊党,培志,马京缘. 高密度钻井液加重材料沉降问题研究进展[J]. 钻井液与完井液,2019,36(1):1-9.

    PAN Yidang, YU Peizhi, MA Jingyuan. Progresses in research on settling of weighting materials in high density drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):1-9.
    [5] 王茜,马昭华,袁学芳,等. 微细钛铁粉加重剂在钻井液中的应用[J]. 钻井液与完井液,2018,35(3):17-24.

    WANG Qian, MA Zhaohua, YUAN Xuefang, et al. Application of ultra fine ilmenite powder as drilling fluid weighting agent[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):17-24.
    [6] AL-BAGOURY M, STEELE C. A new,alternative weighting material for drilling fluids[C]//IADC/SPE Drilling Conference and Exhibition. San Diego, California, USA: SPE, 2012: SPE-151331-MS.
    [7] 张晖,蒋绍宾,袁学芳,等. 微锰加重剂在钻井液中的应用[J]. 钻井液与完井液,2018,35(1):1-7.

    ZHANG Hui, JIANG Shaobin, YUAN Xuefang, et al. Application of micro powder manganese weighting agent in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(1):1-7.
    [8] 韩成,邱正松,黄维安,等. 新型高密度钻井液加重剂Mn3O4的研究及性能评价[J]. 西安石油大学学报(自然科学版),2014,29(2):89-93.

    HAN Cheng, QIU Zhengsong, HUANG Weian, et al. Performance evaluation of high-density drilling fluid weighting agent Mn3O4[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2014, 29(2):89-93.
    [9] AL-BAGOURY M. Micronized ilmenite-a non-damaging & non-sagging new weight material for drilling fluids[C]//SPE Bergen One Day Seminar. Bergen, Norway: SPE, 2014: SPE-169182-MS.
    [10] ELKATATNY S M, XIAO J, NASR-EL-DIN H A, et al. Using hydrochloric acid to remove ilmenite water-based filter cake in HPHT applications[C]//SPE European Formation Damage Conference & Exhibition. Noordwijk, The Netherlands: SPE, 2013: SPE-165181-MS.
    [11] 王双威,曹权,张洁,等. 四氧化三锰加重剂提高钻井液储层保护效果研究[J]. 化学工程与装备,2019(8):106-109.

    WANG Shuangwei, CAO Quan, ZHANG Jie, et al. Study on the effect of manganese tetroxide weighting agent on improving drilling fluid reservoir protection[J]. Chemical Engineering & Equipment, 2019(8):106-109.
    [12] 黄维安,邱正松,钟汉毅,等. 高密度钻井液加重剂的研究[J]. 国外油田工程,2010,26(8):37-40.

    HUANG Weian, QIU Zhengsong, ZHONG Hanyi, et al. Study on weighting agent of high density mud[J]. Foreign Oilfield Engineering, 2010, 26(8):37-40.
    [13] BASFAR S, AHMED A, SOLLING T, et al. Using manganese tetroxide for hematite settling prevention in water-based mud[J]. Arabian Journal for Science and Engineering, 2022, 47(9): 11579-11586.
    [14] 尹达,吴晓花,刘锋报,等. 抗160 ℃超高密度柴油基钻井液体系[J]. 钻井液与完井液,2019,36(3):280-286.

    YIN Da, WU Xiaohua, LIU Fengbao, et al. An ultra-high density diesel oil base drilling fluid for use at 160 ℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):280-286.
    [15] 何旻雁. 液相法制备高纯四氧化三锰的研究[D]. 南宁:广西大学,2015.

    HE Minyan. Research on preparation of high purity manganic manganous oxide by liquid phase method[D]. Nanning: Guangxi University, 2015.
    [16] 黄文杰,毛耀清,冯树兵,等. 不同催化体系下制备四氧化三锰的实验研究[J]. 中国锰业,2021,39(1):42-45.

    HUANG Wenjie, MAO Yaoqing, FENG Shubing, et al. An experimental study on preparation of trimanganese tetroxide under different catalytic systems[J]. China's Manganese Industry, 2021, 39(1):42-45.
    [17] YANG Dingzhu. On preparations and applications of nano-materials for batteries[C]//Proceedings of the 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017). Dalian, China: Atlantis Press, 2017: 186-189.
    [18] 吴小俊. 软锰矿制备高纯四氧化三锰的研究[D]. 马鞍山:安徽工业大学,2013.

    WU Xiaojun. Study on preparation of high-purity Mn3O4 derived from pyrolusite[D]. Maanshan: Anhui University of Technology, 2013.
    [19] 艾贵成,喻著成,王卫国,等. 磁性摩阻对青深1井影响的研究及对策[J]. 西部探矿工程,2009,21(5):36-38.

    AI Guicheng, YU Zhucheng, WANG Weiguo, et al. Research and countermeasures of the influence of magnetic friction on qingshen 1 well[J]. West-China Exploration Engineering, 2009, 21(5):36-38.
    [20] 吴若宁,熊汉桥,张光生,等. 微粉加重剂与普通重晶石复配加重油基钻井液性能[J]. 石油钻采工艺,2018,40(5):582-588.

    WU Ruoning, XIONG Hanqiao, ZHANG Guangsheng, et al. Properties of oil-based drilling fluid weighted by the combination of micronized weighting agent and common barite[J]. Oil Drilling & Production Technology, 2018, 40(5):582-588.
    [21] 方俊伟,张翼,李双贵,等. 顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术[J]. 石油钻探技术,2020,48(2):17-22.

    FANG Junwei, ZHANG Yi, LI Shuanggui, et al. Acid-soluble temporary plugging technology for ultra-deep fractured carbonate reservoirs in block 1 of the Shunbei area[J]. Petroleum Drilling Techniques, 2020, 48(2):17-22.
    [22] 董晓强,李雄,方俊伟,等. 高密度钻井液高温静态沉降稳定性室内研究[J]. 钻井液与完井液,2020,37(5):626-630.

    DONG Xiaoqiang, LI Xiong, FANG Junwei, et al. Laboratory study on static settlement stability of high density drilling fluid at high temperature[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):626-630.
    [23] 李美娴,杨勇,陆青艳,等. 高浓度含锰废水的处理及资源化利用[J]. 中国锰业,2017,35(z1):51-54.

    LI Meixian, YANG Yong, LU Qingyan, et al. Treatment and resource utilization of wastewater with high manganese concentration[J]. China's Manganese Industry, 2017, 35(z1):51-54.
    [24] 刘鸿庆,韦婷婷,陈艳,等. 广西大新锰矿地采废水处理研究[J]. 中国锰业,2020,38(4):78-80.

    LIU Hongqing, WEI Tingting, CHEN Yan, et al. An effluent treatment of Daxin Mn-mine[J]. China Manganese Industry, 2020, 38(4):78-80.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  651
  • HTML全文浏览量:  237
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 修回日期:  2023-02-13
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回