Study and Application of a Graphene Lugging Agent for Water Based Drilling Fluids
-
摘要: 在解决硬脆性泥页岩井壁失稳和深层泥砂岩互层的储层伤害问题过程中,强化对微裂缝微孔隙的快速封堵是攻关方向之一。石墨烯因其优异的纳米尺寸和片层状的膜结构,在封堵时具有低浓度、高效率的特点。以石墨为原材料,采用旋转剥离工艺技术,室内制备了一种稳定的石墨烯浆体材料。性能评价表明,该处理剂中值粒径D50在5 μm左右,具有较好的降滤失和抑制页岩膨胀的效果,能有效强化对砂盘微孔隙的封堵。通过2口井的现场应用表明,该处理剂与水基钻井液具有良好的配伍性,能够提高钻井液的封堵效果,有利于解决滤液侵入导致的井壁失稳问题。Abstract: Fast plugging of microfractures and micropores in the hard brittle shales and deep buried sandstone/mudstone interbeds is one of the challenges that needs to be dealt with in solving borehole wall collapse in drilling the shale formation and reservoir damage. Graphene materials, because of their excellent properties such as nanometer sizes and layered membrane structures, can be used to solve these downhole problems at low concentrations and with high efficiency. A graphene slurry with good stability is prepared in laboratory with graphite using rolling lift-off technique. Evaluation of the performance of the graphene slurry shows that the D50 of the graphene particles is ±5 μm. The graphene slurry has good filtration control property and shale swelling inhibitive capacity. PPA test results show that the graphene slurry is able to effectively seal off the micropores on the sand plate. The application of the graphene slurry on two wells shows that it has good compatibility with the water based drilling fluids used and improves the plugging efficiency of the drilling fluids. Using this graphene slurry, the borehole wall collapse problem previously encountered is successfully solved.
-
表 1 石墨烯处理剂与不同钻井液的配伍性
钻井液 实验
条件AV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 FLAPI/
mL5%膨润土浆 热滚前 7.0 5 2.0 1/1 16.0 93 ℃、16 h 7.0 6 1.0 1/1 16.2 5%膨润土浆+
2%石墨烯热滚前 8.0 6 2.0 1/1 9.8 93 ℃、16 h 7.0 6 1.0 1/1 9.6 聚合物钻井液 热滚前 23.5 18 5.5 2/1 5.5 93 ℃、16 h 23.5 20 3.5 2/1 5.5 聚合物钻井液+
2%石墨烯热滚前 24.0 18 6.0 2/1 4.8 93 ℃、16 h 23.5 18 5.5 2/1 4.9 KCl钻井液 热滚前 29.5 21 8.5 4/3 4.4 93 ℃、16 h 28.5 21 7.5 3/2 4.5 KCl钻井液+
2%石墨烯热滚前 29.0 22 7.0 4/3 4.1 93 ℃、16 h 28.0 21 7.0 3/2 4.2 注:聚合物钻井液取自兴华1-105井钻至井深4500 m的现场钻井液;KCl钻井液取自兴华11-13井钻至井深4300 m的现场钻井液。 表 2 不同加量石墨烯处理剂在清水中的线性膨胀效果
测试流体 8 h线性膨胀量/mm 线性膨胀降低率/% 清水 15.30 2%石墨烯 9.03 41.0 3%石墨烯 8.42 45.0 3%纳米封堵剂 8.27 45.9 表 3 不同加量石墨烯处理剂在5%膨润土浆中的润滑效果
石墨烯/% 极压润滑
系数极压润滑系数
降低率/%黏附
系数黏附系数
降低率/%0 0.52 0.182 2 0.10 80.77 0.172 5.32 3 0.08 84.61 0.170 6.59 表 4 石墨烯处理剂的PPA封堵滤失效果
钻井液 不同时间下的滤失量/mL 7.5 min 30 min 5%膨润土浆 22.0 52.0 5%膨润土浆+2%石墨烯 8.5 16.8 5%膨润土浆+3%石墨烯 6.9 14.4 -
[1] 石秉忠,夏柏如,林永学,等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137-142. doi: 10.1038/aps.2011.157SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1):137-142. doi: 10.1038/aps.2011.157 [2] 张洪伟,左凤江,李洪俊,等. 微裂缝封堵剂评价新方法及强封堵钻井液配方优选[J]. 钻井液与完井液,2015,32(6):43-45,49.ZHANG Hongwei, ZUO Fengjiang, LI Hongjun, et al. Method for evaluation of plugging of nano-micron fractures[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):43-45,49. [3] 佘朝毅,李博,代锋,等. 微纳米井壁强化技术在长宁“大坝东”区域的应用[J]. 钻井液与完井液,2022,39(5):573-578. doi: 10.12358/j.issn.1001-5620.2022.05.007SHE Chaoyi, LI Bo, DAI Feng, et al. Borehole wall strengthening with micron and nano materials in “Dabadong” area of Changning[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):573-578. doi: 10.12358/j.issn.1001-5620.2022.05.007 [4] 孔勇. 地层环境响应封堵材料研究与应用[J]. 钻井液与完井液,2022,39(6):677-684. doi: 10.12358/j.issn.1001-5620.2022.06.003KONG Yong. Study and application of formation environment responsive plugging material[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):677-684. doi: 10.12358/j.issn.1001-5620.2022.06.003 [5] 石秉忠 ,胡旭辉 ,高书阳,等. 硬脆性泥页岩微裂缝封堵可视化模拟试验与评价[J]. 石油钻探技术,2014,42(3):32-37.SHI Bingzhong, HU Xuhui, GAO Shuyang, et al. Visualization sealing simulation test and evaluation of hard brittle shale microfracture[J]. Petroleum Drilling Techniques, 2014, 42(3):32-37. [6] 邱正松,王伟吉,董兵强,等. 微纳米封堵技术研究及应用[J]. 钻井液与完井液,2015,32(2):6-10.QIU Zhengsong, WANG Weiji, DONG Bingqiang, et al. Investigation and application micro-nano sealing technolgoy[J]. Drilling Fluid & Completion Fluid, 2015, 32(2):6-10. [7] 张浩,张世锋,姚靖,等. 氧化石墨烯封堵龙马溪组泥页岩机理研究[J]. 精细化工,2020,37(5):1038-1044.ZHANG Hao, ZHANG Shifeng, YAO Jing, et al. Mechanism of blocking mud shale on Longmaxi formation by graphene oxide[J]. Fine Chemicals, 2020, 37(5):1038-1044. [8] 罗平亚,李文哲,代锋,等. 四川盆地南部龙马溪组页岩气藏井壁强化钻井液技术[J]. 天然气工业,2023,43(4):1-10.LUO Pingya, LI Wenzhe, DAI Feng, et al. Strengthening drilling fluid technology for shale gas reservoirs in the Longmaxi formation, southern Sichuan basin[J]. Natural Gas Industry, 2023, 43(4):1-10. [9] 曲建峰,邱正松,郭保雨,等. 氧化石墨烯新型抗高温降滤失剂的合成与评价[J]. 钻井液与完井液,2017,34(4):9-14. doi: 10.3969/j.issn.1001-5620.2017.04.002QU Jianfeng, QIU Zhengsong, GUO Baoyu, et al. Synthesis and evaluation of a new graphene oxide high temperature filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2017, 34(4):9-14. doi: 10.3969/j.issn.1001-5620.2017.04.002 [10] 王伟,夏小春,蒋程扬,等. 石墨烯氧化物的制备及其在钻井液中的降滤失性能研究[J]. 化学与生物工程,2018,35(10):49-52,68.WANG Wei, XIA Xiaochun, JIANG Chengyang, et al. Preparation of graphene oxide and its fluid loss control property in drilling fluid[J]. Chemistry & Bioengineering, 2018, 35(10):49-52,68.