留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水基钻井液用抗超高温聚合物刷润滑剂的研制

高重阳 黄贤斌 白英睿 孙金声 吕开河 张瑜 宗嘉江 刘锋报

高重阳,黄贤斌,白英睿,等. 水基钻井液用抗超高温聚合物刷润滑剂的研制[J]. 钻井液与完井液,2023,40(4):453-461 doi: 10.12358/j.issn.1001-5620.2023.04.006
引用本文: 高重阳,黄贤斌,白英睿,等. 水基钻井液用抗超高温聚合物刷润滑剂的研制[J]. 钻井液与完井液,2023,40(4):453-461 doi: 10.12358/j.issn.1001-5620.2023.04.006
GAO Chongyang, HUANG Xianbin, BAI Yingrui, et al.Development of ultra-high temperature polymer brush lubricant for water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(4):453-461 doi: 10.12358/j.issn.1001-5620.2023.04.006
Citation: GAO Chongyang, HUANG Xianbin, BAI Yingrui, et al.Development of ultra-high temperature polymer brush lubricant for water based drilling fluids[J]. Drilling Fluid & Completion Fluid,2023, 40(4):453-461 doi: 10.12358/j.issn.1001-5620.2023.04.006

水基钻井液用抗超高温聚合物刷润滑剂的研制

doi: 10.12358/j.issn.1001-5620.2023.04.006
基金项目: 山东省重点研发计划“绿色高效井筒工作液关键材料研发及产业化”(2020ZX20210015)。
详细信息
    作者简介:

    高重阳,1998年生,中国石油大学(华东)在读硕士研究生,现在从事钻井液技术研究工作。电话17685895150,E-mail:2745149920@qq.com。

    通讯作者:

    黄贤斌,中国石油大学(华东)副教授。E-mail:20170092@upc.edu.cn。

  • 中图分类号: TE254.4

Development of Ultra-high Temperature Polymer Brush Lubricant for Water Based Drilling Fluids

  • 摘要: 深部复杂地层油气钻探过程中,为了满足钻井液抗高温、抗盐的技术要求,以甲基丙烯酸甲酯、丙烯酸月桂酯、丙烯酸羟乙酯为主要原料,偶氮二异丁腈作为引发剂,制备了一种水基钻井液用聚合物刷润滑剂HLM。通过傅里叶红外光谱、核磁共振、热重分析和凝胶色谱分析对产物进行了表征。然后评价了HLM与钻井液的配伍性以及高温、高盐、高密度条件下的润滑性能,利用多功能材料表面性能测试仪和四球摩擦实验仪进一步分析了润滑性。实验结果表明,HLM的热稳定性较好,重均分子质量为3494;HLM在室温下与基浆配伍性良好,对流变性基本没影响,抗温可达260 ℃;加量2%时,常温下润滑系数降低率达91.16%, 260 ℃老化后润滑系数降低率达88.24%;在饱和盐水基浆中润滑系数降低率为75.69%,在高密度基浆中润滑系数降低率大于40%。表面摩擦实验进一步证明了HLM可以大幅度降低金属-金属间的摩擦力,四球摩擦实验证明了HLM可在金属表面形成稳定的润滑膜。由于HLM具有多个吸附位点且吸附能力强,在高温、高盐条件下吸附膜仍具有一定的强度,因此赋予HLM良好的润滑性能。可为深层超深层钻井液体系的构建提供技术借鉴。

     

  • 图  1  HLM的傅里叶红外光谱图

    图  2  HLM的热重分析图

    图  3  HLM的核磁氢谱分析图

    图  4  HLM的凝胶色谱分析图

    图  5  HLM对膨润土基浆变性能和滤失性能的影响

    图  6  HLM对钢片表面摩擦性能的影响

    图  7  四球摩擦实验结果

    表  1  HLM相对分子质量结果

    重均分
    子量
    数均分
    子量
    Z均分
    子量
    最高位
    峰的分
    子量
    Z+1均分
    子量
    分散指数D
    349425745086349465831.450 66
    下载: 导出CSV

    表  2  HLM对基浆润滑系数的影响

    HLM/%摩擦阻力润滑系数润滑系数降低率/%
    063.30.5913
    0.59.10.085085.61
    1.07.90.073887.52
    1.57.60.071087.99
    2.05.60.052391.16
    注:水的摩擦阻力为36.4 ,校正系数为0.9341。
    下载: 导出CSV

    表  3  高温条件下HLM对基浆润滑性能的影响

    T/
    润滑剂/
    %
    摩擦阻力润滑系数润滑系数
    降低率/%
    180 061.10.6039
    19.20.090984.95
    28.20.081386.54
    200060.10.5941
    15.30.052191.23
    24.10.040393.21
    220059.30.5857
    15.70.056490.37
    25.20.051791.17
    240058.00.5732
    16.30.062589.26
    25.70.056789.97
    260057.10.5645
    17.70.076286.50
    26.70.066488.24
      注:水的摩擦阻力为34.4 ,校正系数为0.9884。
    下载: 导出CSV

    表  4  加盐条件下HLM对基浆润滑性能的影响

    NaCl/
    %
    润滑剂/
    %
    摩擦阻力润滑系数润滑系数
    降低率/%
    5064.80.6120
    127.50.259757.57
    221.30.201267.12
    10040.70.3844
    121.60.204046.93
    218.80.177553.82
    15038.40.3626
    122.30.210641.92
    218.20.172052.48
    20041.10.3881
    122.60.213445.61
    218.60.175754.73
    25039.60.3740
    125.30.238936.12
    218.70.176652.78
    30042.70.4033
    124.50.231042.72
    213.30.125668.86
    35043.20.4080
    122.20.209748.60
    210.50.099275.69
      注:水的摩擦阻力为36.0 ,校正系数为0.9444。
    下载: 导出CSV

    表  5  HLM对高密度浆润滑性能的影响

    HLM/%摩擦阻力润滑系数润滑系数降低率/%
    025.30.2501
    114.30.141343.50
    213.50.133446.66
    312.50.123650.58
      注:水的摩擦阻力为34.4 ,校正系数为 0.9884。
    下载: 导出CSV
  • [1] 胡素云,李建忠,王铜山,等. 中国石油油气资源潜力分析与勘探选区思考[J]. 石油实验地质,2020,42(5):813-823.

    HU Suyun, LI Jianzhong, WANG Tongshan, et al. CNPC oil and gas resource potential and exploration target selection[J]. Petroleum Geology and Experiment, 2020, 42(5):813-823.
    [2] WANG Y J, JIA D, PAN J G, et al. Multiple-phase tectonic superposition and reworking in the Junggar basin of northwestern China-implications for deep-seated petroleum exploration[J]. AAPG Bulletin, 2018, 102(8):1489-1521. doi: 10.1306/10181716518
    [3] 孙浩. 抗高温钻井液机理研究及性能评价[J]. 西部探矿工程,2021,33(6):87-91. doi: 10.3969/j.issn.1004-5716.2021.06.029

    SUN Hao. Research on the mechanism and performance evaluation of high temperature resistant drilling fluids[J]. West-China Exploration Engineering, 2021, 33(6):87-91. doi: 10.3969/j.issn.1004-5716.2021.06.029
    [4] LONG L, XU X G, ZHU J Z, et al. Application of innovative high-temperature high-density oil-based drilling fluid technology in the efficient exploration and development of ultra-deep natural gas resources in west China[C]//International Petroleum Technology Conference. Bangkok, Thailand: IPTC, 2016: IPTC-18600-MS.
    [5] 张继国. 川北深探井营浅2井钻井液技术[J]. 中国石油和化工标准与质量,2021,41(22):188-190. doi: 10.3969/j.issn.1673-4076.2021.22.090

    ZHANG Jiguo. Drilling fluid technology for Yingqian 2 well in North Sichuan deep exploration well[J]. Chinese Petroleum and Chemical Standards and Quality, 2021, 41(22):188-190. doi: 10.3969/j.issn.1673-4076.2021.22.090
    [6] 杨禄明,王正良,王西江. 矿化度对钻井液性能及井壁稳定影响因素分析[J]. 西部探矿工程,2017,29(4):89-91. doi: 10.3969/j.issn.1004-5716.2017.04.028

    YANG Luming, WANG Zhengliang, WANG Xijiang. Analysis of factors influencing mineralization degree on drilling fluid performance and wall stability[J]. West-China Exploration Engineering, 2017, 29(4):89-91. doi: 10.3969/j.issn.1004-5716.2017.04.028
    [7] SUN J, ZHANG X, LYU K, et al. Synthesis of hydrophobic associative polymers to improve the rheological and filtration performance of drilling fluids under high temperature and high salinity conditions[J]. Journal of Petroleum Science and Engineering, 2022, 209:109808. doi: 10.1016/j.petrol.2021.109808
    [8] 张雁,屈沅治,张志磊,等. 超高温水基钻井液技术研究现状及发展方向[J]. 油田化学,2022,39(3):540-547. doi: 10.19346/j.cnki.1000-4092.2022.03.027

    ZHANG Yan, QU Ruanzhi, ZHANG Zhilei, et al. Research status and development direction of ultra-high temperature water-based drilling fluid technology[J]. Oilfield Chemistry, 2022, 39(3):540-547. doi: 10.19346/j.cnki.1000-4092.2022.03.027
    [9] 贾佳. 临兴区块致密气水平井高摩阻影响因素及应对措施[J]. 录井工程,2020,31(3):65-69. doi: 10.3969/j.issn.1672-9803.2020.03.012

    JIA Jia. Influencing factors and countermeasures of high friction in tight gas horizontal wells in Linxing block[J]. Mud Logging Engineering, 2020, 31(3):65-69. doi: 10.3969/j.issn.1672-9803.2020.03.012
    [10] HUANG X B, SUN J S, LI H, et al. Fabrication of a hydrophobic hierarchical surface on shale using modified Nano-SiO2 for strengthening the wellbore wall in drilling engineering[J]. Engineering, 2022, 11:101-110. doi: 10.1016/j.eng.2021.05.021
    [11] 李勇政,陈涛,江川,等. 四川盆地磨溪–高石梯区块定向钻井关键技术[J]. 石油钻探技术,2021,49(2):26-31. doi: 10.11911/syztjs.2020103

    LI Yongzheng, CHEN Tao, JIANG Chuan, et al. Key technologies of directional drilling in the Moxi-Gaoshiti area of the Sichuan basin[J]. Petroleum Drilling Techniques, 2021, 49(2):26-31. doi: 10.11911/syztjs.2020103
    [12] 魏昱,王骁男,安玉秀,等. 钻井液润滑剂研究进展[J]. 油田化学,2017,34(4):727-733. doi: 10.19346/j.cnki.1000-4092.2017.04.031

    WEI Yu, WANG Xiaonan, AN Yuxiu, et al. Research development of drilling fluid lubricant[J]. Oilfield Chemistry, 2017, 34(4):727-733. doi: 10.19346/j.cnki.1000-4092.2017.04.031
    [13] 张立权,侯珊珊,吴宇,等. 钻井液用环保润滑剂研究进展及发展趋势[J]. 油田化学,2022,39(01):163-169.

    ZHANG Liquan, HOU Shanshan, WU Yu, et al. Research progress and development trend of environmentally friendly lubricants for drilling fluids[J]. Oilfield Chemistry, 2022, 39(01):163-169.
    [14] MUELLER H, HEROLD C P, TAPAVICZA S V. Use of selected fatty alcohols and their mixtures with carboxylic acid esters as lubricant components in water - based drilling fluid systems for soil exploration: US, 6716799 B1 [P]. 2004–04–06.
    [15] FISK J,Jr V, KERCHEVILE J D, POBER K W. Silicic acid mud lubricants: US 2003/0232726 A1[P]. 2003-12-18.
    [16] YU C C, KE Y C, DENG Q C, et al. Synthesis and characterization of polystyrene-montmorillonite nanocomposite particles using an anionic-surfactant-modified clay and their friction performance[J]. Applied Sciences, 2018, 8(6):964. doi: 10.3390/app8060964
    [17] SAFFARI H R M, SOLTANI R, ALAEI M, et al. Tribological properties of water-based drilling fluids with borate nanoparticles as lubricant additives[J]. Journal of Petroleum Science and Engineering, 2018, 171:253-259. doi: 10.1016/j.petrol.2018.07.049
    [18] MA C F, WEN R, ZHOU F S, et al. Preparation and application of an environmentally friendly compound lubricant based biological oil for drilling fluids[J]. Arabian Journal of Chemistry, 2022, 15(3):103610. doi: 10.1016/j.arabjc.2021.103610
    [19] 张正奎. 柱状聚合物分子刷的合成及其生物学效应研究[D]. 南京: 南京大学, 2019.

    ZHANG Zhengkui. Synthesis and biological effects of cylindrical polymer brushes[D]. Nanjing: Nanjing University, 2019.
    [20] 王茂林. 聚合物分子刷型催化剂载体的设计、制备及应用研究[D]. 杭州: 浙江理工大学, 2021.

    WANG Maolin. Research on the design, preparation and application of polymer brush-based catalyst carrier[D]. Hangzhou: Zhejiang Sci-Tech University, 2021.
    [21] 胡飞,朱良宇,王雨晨,等. 纤维蛋白在聚(2-甲基-2-噁唑啉)/聚丙烯酸混合聚合物刷上的吸附-脱附行为[J]. 功能高分子学报,2021,34(4):352-361. doi: 10.14133/j.cnki.1008-9357.20210119002

    HU Fei, ZHU Liangyu, WANG Yuchen, et al. Adsorption and desorption behavior of fibrinogen on poly(2-methyl-2-oxazoline)/poly (acrylic acid) mixed brushes[J]. Journal of Functional Polymers, 2021, 34(4):352-361. doi: 10.14133/j.cnki.1008-9357.20210119002
    [22] KREER T. Polymer-brush lubrication: a review of recent theoretical advances[J]. Soft Matter, 2016, 12(15):3479-3501. doi: 10.1039/C5SM02919H
    [23] 肖文昊. (甲基)丙烯酸酯聚合物的后聚合改性研究[D]. 广州: 广东工业大学, 2021.

    XIAO Wenhao. Post-polymerization modification of (meth) acrylate polymer[D]. Guangzhou: Guangdong University of Technology, 2021.
    [24] 向明玥. 聚甲基丙烯酸长侧链烷基酯聚集态结构和结晶机理的研究[D]. 合肥: 中国科学技术大学, 2021.

    XIANG Mingyue. The aggregation structure and crystallization mechanism of poly(n-alkyl methacrylate)s[D]. Hefei: University of Science and Technology of China, 2021.
    [25] 解义晓. 功能化羟基丙烯酸水分散体的制备研究及其应用[D]. 镇江: 江苏科技大学, 2021.

    XIE Yixiao. Study on the preparation of functionalized water-borne hydroxyl acrylic resin and its applications[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021.
    [26] MCKENNA L, MILLER L S, PETERSON I R. Polymer dispersed liquid crystal films for modulating infra-red radiation[J]. Polymer, 2004, 45(20):6977-6984. doi: 10.1016/j.polymer.2004.07.033
    [27] GOZBENKO V E, KARGAPOLTSEV S K, KARLINA A I. Environmental benefits of new industrial waste-based lubricant compositions[J]. IOP Conference Series:Earth and Environmental Science, 2019, 229:012020. doi: 10.1088/1755-1315/229/1/012020
    [28] MÜLLER M, LEE S, SPIKES H A, et al. The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(l-lysine)-g-poly(ethylene glycol)(PLL-g-PEG) adsorbed on oxide surfaces[J]. Tribology Letters, 2003, 15(4):395-405. doi: 10.1023/B:TRIL.0000003063.98583.bb
    [29] YANG M J, KOUTSOS V, ZAISER M. Interactions between polymers and carbon nanotubes: a molecular dynamics study[J]. The Journal of Physical Chemistry B, 2005, 109(20):10009-10014. doi: 10.1021/jp0442403
    [30] YAN J J, BOCKSTALLER M R, MATYJASZEWSKI K. Brush-modified materials: control of molecular architecture, assembly behavior, properties and applications[J]. Progress in Polymer Science, 2020, 100:101180. doi: 10.1016/j.progpolymsci.2019.101180
    [31] BRANTLEY E L, HOLMES T C, JENNINGS G K. Modification of ATRP surface-initiated poly(hydroxyethyl methacrylate) films with hydrocarbon side chains[J]. The Journal of Physical Chemistry B, 2004, 108(41):16077-16084. doi: 10.1021/jp0476038
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  554
  • HTML全文浏览量:  200
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-04-06
  • 录用日期:  2023-05-10
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回