Development of Ultra-high Temperature Polymer Brush Lubricant for Water Based Drilling Fluids
-
摘要: 深部复杂地层油气钻探过程中,为了满足钻井液抗高温、抗盐的技术要求,以甲基丙烯酸甲酯、丙烯酸月桂酯、丙烯酸羟乙酯为主要原料,偶氮二异丁腈作为引发剂,制备了一种水基钻井液用聚合物刷润滑剂HLM。通过傅里叶红外光谱、核磁共振、热重分析和凝胶色谱分析对产物进行了表征。然后评价了HLM与钻井液的配伍性以及高温、高盐、高密度条件下的润滑性能,利用多功能材料表面性能测试仪和四球摩擦实验仪进一步分析了润滑性。实验结果表明,HLM的热稳定性较好,重均分子质量为3494;HLM在室温下与基浆配伍性良好,对流变性基本没影响,抗温可达260 ℃;加量2%时,常温下润滑系数降低率达91.16%, 260 ℃老化后润滑系数降低率达88.24%;在饱和盐水基浆中润滑系数降低率为75.69%,在高密度基浆中润滑系数降低率大于40%。表面摩擦实验进一步证明了HLM可以大幅度降低金属-金属间的摩擦力,四球摩擦实验证明了HLM可在金属表面形成稳定的润滑膜。由于HLM具有多个吸附位点且吸附能力强,在高温、高盐条件下吸附膜仍具有一定的强度,因此赋予HLM良好的润滑性能。可为深层超深层钻井液体系的构建提供技术借鉴。Abstract: During oil and gas drilling in deep complex formations, the technical requirements of high temperature and salt-resistance of drilling fluid should be met. In this paper, a polymer brush lubricant (HLM) for water-based drilling fluids was prepared using methyl methacrylate, lauryl acrylate and 2-hydroxyethyl acrylate as the main raw materials and 2-methylpropionitrile as the initiator. The HLM was characterized by means of Fourier infrared spectroscopy, nuclear magnetic resonance spectroscopy, thermogravimetric analysis and gel chromatography. The compatibility of HLM with drilling fluids and the lubricity performance of HLM under high temperature, high salt and high density conditions were evaluated. The lubricity was further analyzed using a multifunctional material surface performance tester and a four-ball friction tester. The experimental results showed that HLM had a good thermal stability with a weight average molecular mass of 3494. HLM had good compatibility with the bentonite-based mud at room temperature and had essentially no effect on rheology. The temperature resistance can reach 260 ℃.When concentration of HLM was 2%, the lubrication coefficient reduction rates were 91.16% under room temperature, 88.24% after ageing at 260 ℃, 75.69% for the saturated salt-based mud, and larger than 40% in the high-density drilling mud. The multifunctional material surface performance experiment further demonstrated that HLM could substantially reduce metal-to-metal friction. The four-ball friction experiment demonstrated that HLM could form a stable lubricating film on metal surfaces. Since HLM had multiple adsorption sites and strong adsorption capacity, the adsorption film still had high strength under high temperature and high salt conditions, giving HLM good lubricating properties. This paper can provide technical reference for the construction of drilling fluids for deep/ultra-deep formations.
-
Key words:
- Water-based drilling fluid /
- Polymer brush /
- Lubricant /
- High temperature /
- High salt
-
表 1 HLM相对分子质量结果
重均分
子量数均分
子量Z均分
子量最高位
峰的分
子量Z+1均分
子量分散指数D 3494 2574 5086 3494 6583 1.450 66 表 2 HLM对基浆润滑系数的影响
HLM/% 摩擦阻力 润滑系数 润滑系数降低率/% 0 63.3 0.5913 0.5 9.1 0.0850 85.61 1.0 7.9 0.0738 87.52 1.5 7.6 0.0710 87.99 2.0 5.6 0.0523 91.16 注:水的摩擦阻力为36.4 ,校正系数为0.9341。 表 3 高温条件下HLM对基浆润滑性能的影响
T/
℃润滑剂/
%摩擦阻力 润滑系数 润滑系数
降低率/%180 0 61.1 0.6039 1 9.2 0.0909 84.95 2 8.2 0.0813 86.54 200 0 60.1 0.5941 1 5.3 0.0521 91.23 2 4.1 0.0403 93.21 220 0 59.3 0.5857 1 5.7 0.0564 90.37 2 5.2 0.0517 91.17 240 0 58.0 0.5732 1 6.3 0.0625 89.26 2 5.7 0.0567 89.97 260 0 57.1 0.5645 1 7.7 0.0762 86.50 2 6.7 0.0664 88.24 注:水的摩擦阻力为34.4 ,校正系数为0.9884。 表 4 加盐条件下HLM对基浆润滑性能的影响
NaCl/
%润滑剂/
%摩擦阻力 润滑系数 润滑系数
降低率/%5 0 64.8 0.6120 1 27.5 0.2597 57.57 2 21.3 0.2012 67.12 10 0 40.7 0.3844 1 21.6 0.2040 46.93 2 18.8 0.1775 53.82 15 0 38.4 0.3626 1 22.3 0.2106 41.92 2 18.2 0.1720 52.48 20 0 41.1 0.3881 1 22.6 0.2134 45.61 2 18.6 0.1757 54.73 25 0 39.6 0.3740 1 25.3 0.2389 36.12 2 18.7 0.1766 52.78 30 0 42.7 0.4033 1 24.5 0.2310 42.72 2 13.3 0.1256 68.86 35 0 43.2 0.4080 1 22.2 0.2097 48.60 2 10.5 0.0992 75.69 注:水的摩擦阻力为36.0 ,校正系数为0.9444。 表 5 HLM对高密度浆润滑性能的影响
HLM/% 摩擦阻力 润滑系数 润滑系数降低率/% 0 25.3 0.2501 1 14.3 0.1413 43.50 2 13.5 0.1334 46.66 3 12.5 0.1236 50.58 注:水的摩擦阻力为34.4 ,校正系数为 0.9884。 -
[1] 胡素云,李建忠,王铜山,等. 中国石油油气资源潜力分析与勘探选区思考[J]. 石油实验地质,2020,42(5):813-823.HU Suyun, LI Jianzhong, WANG Tongshan, et al. CNPC oil and gas resource potential and exploration target selection[J]. Petroleum Geology and Experiment, 2020, 42(5):813-823. [2] WANG Y J, JIA D, PAN J G, et al. Multiple-phase tectonic superposition and reworking in the Junggar basin of northwestern China-implications for deep-seated petroleum exploration[J]. AAPG Bulletin, 2018, 102(8):1489-1521. doi: 10.1306/10181716518 [3] 孙浩. 抗高温钻井液机理研究及性能评价[J]. 西部探矿工程,2021,33(6):87-91. doi: 10.3969/j.issn.1004-5716.2021.06.029SUN Hao. Research on the mechanism and performance evaluation of high temperature resistant drilling fluids[J]. West-China Exploration Engineering, 2021, 33(6):87-91. doi: 10.3969/j.issn.1004-5716.2021.06.029 [4] LONG L, XU X G, ZHU J Z, et al. Application of innovative high-temperature high-density oil-based drilling fluid technology in the efficient exploration and development of ultra-deep natural gas resources in west China[C]//International Petroleum Technology Conference. Bangkok, Thailand: IPTC, 2016: IPTC-18600-MS. [5] 张继国. 川北深探井营浅2井钻井液技术[J]. 中国石油和化工标准与质量,2021,41(22):188-190. doi: 10.3969/j.issn.1673-4076.2021.22.090ZHANG Jiguo. Drilling fluid technology for Yingqian 2 well in North Sichuan deep exploration well[J]. Chinese Petroleum and Chemical Standards and Quality, 2021, 41(22):188-190. doi: 10.3969/j.issn.1673-4076.2021.22.090 [6] 杨禄明,王正良,王西江. 矿化度对钻井液性能及井壁稳定影响因素分析[J]. 西部探矿工程,2017,29(4):89-91. doi: 10.3969/j.issn.1004-5716.2017.04.028YANG Luming, WANG Zhengliang, WANG Xijiang. Analysis of factors influencing mineralization degree on drilling fluid performance and wall stability[J]. West-China Exploration Engineering, 2017, 29(4):89-91. doi: 10.3969/j.issn.1004-5716.2017.04.028 [7] SUN J, ZHANG X, LYU K, et al. Synthesis of hydrophobic associative polymers to improve the rheological and filtration performance of drilling fluids under high temperature and high salinity conditions[J]. Journal of Petroleum Science and Engineering, 2022, 209:109808. doi: 10.1016/j.petrol.2021.109808 [8] 张雁,屈沅治,张志磊,等. 超高温水基钻井液技术研究现状及发展方向[J]. 油田化学,2022,39(3):540-547. doi: 10.19346/j.cnki.1000-4092.2022.03.027ZHANG Yan, QU Ruanzhi, ZHANG Zhilei, et al. Research status and development direction of ultra-high temperature water-based drilling fluid technology[J]. Oilfield Chemistry, 2022, 39(3):540-547. doi: 10.19346/j.cnki.1000-4092.2022.03.027 [9] 贾佳. 临兴区块致密气水平井高摩阻影响因素及应对措施[J]. 录井工程,2020,31(3):65-69. doi: 10.3969/j.issn.1672-9803.2020.03.012JIA Jia. Influencing factors and countermeasures of high friction in tight gas horizontal wells in Linxing block[J]. Mud Logging Engineering, 2020, 31(3):65-69. doi: 10.3969/j.issn.1672-9803.2020.03.012 [10] HUANG X B, SUN J S, LI H, et al. Fabrication of a hydrophobic hierarchical surface on shale using modified Nano-SiO2 for strengthening the wellbore wall in drilling engineering[J]. Engineering, 2022, 11:101-110. doi: 10.1016/j.eng.2021.05.021 [11] 李勇政,陈涛,江川,等. 四川盆地磨溪–高石梯区块定向钻井关键技术[J]. 石油钻探技术,2021,49(2):26-31. doi: 10.11911/syztjs.2020103LI Yongzheng, CHEN Tao, JIANG Chuan, et al. Key technologies of directional drilling in the Moxi-Gaoshiti area of the Sichuan basin[J]. Petroleum Drilling Techniques, 2021, 49(2):26-31. doi: 10.11911/syztjs.2020103 [12] 魏昱,王骁男,安玉秀,等. 钻井液润滑剂研究进展[J]. 油田化学,2017,34(4):727-733. doi: 10.19346/j.cnki.1000-4092.2017.04.031WEI Yu, WANG Xiaonan, AN Yuxiu, et al. Research development of drilling fluid lubricant[J]. Oilfield Chemistry, 2017, 34(4):727-733. doi: 10.19346/j.cnki.1000-4092.2017.04.031 [13] 张立权,侯珊珊,吴宇,等. 钻井液用环保润滑剂研究进展及发展趋势[J]. 油田化学,2022,39(01):163-169.ZHANG Liquan, HOU Shanshan, WU Yu, et al. Research progress and development trend of environmentally friendly lubricants for drilling fluids[J]. Oilfield Chemistry, 2022, 39(01):163-169. [14] MUELLER H, HEROLD C P, TAPAVICZA S V. Use of selected fatty alcohols and their mixtures with carboxylic acid esters as lubricant components in water - based drilling fluid systems for soil exploration: US, 6716799 B1 [P]. 2004–04–06. [15] FISK J,Jr V, KERCHEVILE J D, POBER K W. Silicic acid mud lubricants: US 2003/0232726 A1[P]. 2003-12-18. [16] YU C C, KE Y C, DENG Q C, et al. Synthesis and characterization of polystyrene-montmorillonite nanocomposite particles using an anionic-surfactant-modified clay and their friction performance[J]. Applied Sciences, 2018, 8(6):964. doi: 10.3390/app8060964 [17] SAFFARI H R M, SOLTANI R, ALAEI M, et al. Tribological properties of water-based drilling fluids with borate nanoparticles as lubricant additives[J]. Journal of Petroleum Science and Engineering, 2018, 171:253-259. doi: 10.1016/j.petrol.2018.07.049 [18] MA C F, WEN R, ZHOU F S, et al. Preparation and application of an environmentally friendly compound lubricant based biological oil for drilling fluids[J]. Arabian Journal of Chemistry, 2022, 15(3):103610. doi: 10.1016/j.arabjc.2021.103610 [19] 张正奎. 柱状聚合物分子刷的合成及其生物学效应研究[D]. 南京: 南京大学, 2019.ZHANG Zhengkui. Synthesis and biological effects of cylindrical polymer brushes[D]. Nanjing: Nanjing University, 2019. [20] 王茂林. 聚合物分子刷型催化剂载体的设计、制备及应用研究[D]. 杭州: 浙江理工大学, 2021.WANG Maolin. Research on the design, preparation and application of polymer brush-based catalyst carrier[D]. Hangzhou: Zhejiang Sci-Tech University, 2021. [21] 胡飞,朱良宇,王雨晨,等. 纤维蛋白在聚(2-甲基-2-噁唑啉)/聚丙烯酸混合聚合物刷上的吸附-脱附行为[J]. 功能高分子学报,2021,34(4):352-361. doi: 10.14133/j.cnki.1008-9357.20210119002HU Fei, ZHU Liangyu, WANG Yuchen, et al. Adsorption and desorption behavior of fibrinogen on poly(2-methyl-2-oxazoline)/poly (acrylic acid) mixed brushes[J]. Journal of Functional Polymers, 2021, 34(4):352-361. doi: 10.14133/j.cnki.1008-9357.20210119002 [22] KREER T. Polymer-brush lubrication: a review of recent theoretical advances[J]. Soft Matter, 2016, 12(15):3479-3501. doi: 10.1039/C5SM02919H [23] 肖文昊. (甲基)丙烯酸酯聚合物的后聚合改性研究[D]. 广州: 广东工业大学, 2021.XIAO Wenhao. Post-polymerization modification of (meth) acrylate polymer[D]. Guangzhou: Guangdong University of Technology, 2021. [24] 向明玥. 聚甲基丙烯酸长侧链烷基酯聚集态结构和结晶机理的研究[D]. 合肥: 中国科学技术大学, 2021.XIANG Mingyue. The aggregation structure and crystallization mechanism of poly(n-alkyl methacrylate)s[D]. Hefei: University of Science and Technology of China, 2021. [25] 解义晓. 功能化羟基丙烯酸水分散体的制备研究及其应用[D]. 镇江: 江苏科技大学, 2021.XIE Yixiao. Study on the preparation of functionalized water-borne hydroxyl acrylic resin and its applications[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021. [26] MCKENNA L, MILLER L S, PETERSON I R. Polymer dispersed liquid crystal films for modulating infra-red radiation[J]. Polymer, 2004, 45(20):6977-6984. doi: 10.1016/j.polymer.2004.07.033 [27] GOZBENKO V E, KARGAPOLTSEV S K, KARLINA A I. Environmental benefits of new industrial waste-based lubricant compositions[J]. IOP Conference Series:Earth and Environmental Science, 2019, 229:012020. doi: 10.1088/1755-1315/229/1/012020 [28] MÜLLER M, LEE S, SPIKES H A, et al. The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(l-lysine)-g-poly(ethylene glycol)(PLL-g-PEG) adsorbed on oxide surfaces[J]. Tribology Letters, 2003, 15(4):395-405. doi: 10.1023/B:TRIL.0000003063.98583.bb [29] YANG M J, KOUTSOS V, ZAISER M. Interactions between polymers and carbon nanotubes: a molecular dynamics study[J]. The Journal of Physical Chemistry B, 2005, 109(20):10009-10014. doi: 10.1021/jp0442403 [30] YAN J J, BOCKSTALLER M R, MATYJASZEWSKI K. Brush-modified materials: control of molecular architecture, assembly behavior, properties and applications[J]. Progress in Polymer Science, 2020, 100:101180. doi: 10.1016/j.progpolymsci.2019.101180 [31] BRANTLEY E L, HOLMES T C, JENNINGS G K. Modification of ATRP surface-initiated poly(hydroxyethyl methacrylate) films with hydrocarbon side chains[J]. The Journal of Physical Chemistry B, 2004, 108(41):16077-16084. doi: 10.1021/jp0476038