Research and Application of Dual-protective Oilfield Water Drilling Fluids System Without Solid
-
摘要: 针对塔河油田奥陶系碳酸盐岩储层开发过程中,常规聚磺钻井液体系含不酸溶固相漏失后污染储层,磺化类处理剂不符合绿色开发理念等技术难题,因地制宜地引入油田水配制无固相钻井液,避免了固相对储层的损害,并优选出了抗高温抗钙增黏剂、流型调节剂、抗高温抗钙聚合物降滤失剂等关键处理剂,开发出了双保型油田水无固相钻井液体系。室内评价数据显示,该钻井液抗温可达150 ℃,动塑比高达0.68~0.76 Pa/mPa·s,生物毒性指标EC50高达28 600 mg/L,生物降解指标BOD5/CODCr高达21.35%,为无毒易降解钻井液体系,动态渗透率恢复值高达91.8%,具有良好的储层保护性能。研发的双保型油田水无固相钻井液体系成功在10多口深侧钻井应用,应用效果显著。Abstract: During the development of the carbonate reservoir of the Tahe oilfield, the conventional polysulfonate drilling fluid damages reservoir duo to non-acid-soluble solid phase after loss, and sulfonalized agent does not conform to the concept of green development. The oilfield water is introduced to formulate a solid free drilling fluid to avoid damage reservoir from solid, and the key treatment agents such as anti-high temperature anti-calcium viscosifier, flow pattern modifiers, high-temperature anti-calcium polymer filtrate reducer. The dual-protective oilfield water drilling fluids system without solid was developed. Indoor evaluation datas show that the drilling fluid was heat resistant to 150 ℃, the ratio between yield point and plastic viscosity is as high as 0.68~0.76 Pa/mPa·s, the EC50 value of biological toxicity indicators is as high as 28,600 mg/L, and the bio-degradation index BOD5/CODCr is as high as 21.35%. The dynamic permeability recovery value is as high as 91.8%, which has good formation damage control performance. The developed dual-protective oilfield water drilling fluids without solid were successfully used in more than ten sidetrack wells,and the application effect was significant.
-
Key words:
- Solid-free /
- Drilling fluid /
- Formation damage control /
- Loss /
- Environmental protection
-
表 1 纯碱加量对油田水钙离子含量的影响
纯碱/
%钙离子含量/
mg·L−1纯碱/
%钙离子含量/
mg·L−1纯碱/
%钙离子含量/
mg·L−10 13 280 2 6910 4 860 1 10 160 3 3885 表 2 预处理油田水钻井液用增黏剂的优选
增黏
剂实验
条件AV/
mPa·sPV/
mPa·sYP/
PaHV-CMC 热滚前 35.0 29.0 6.0 热滚后 5.0 4.0 1.0 PAC-HV 热滚前 46.0 37.0 9.0 热滚后 4.5 4.0 0.5 80A51 热滚前 53.0 48.0 5.0 热滚后 6.0 5.0 1.0 SMVIS 热滚前 58.0 52.0 6.0 热滚后 28.0 24.0 4.0 注:测试温度为50 ℃;增黏剂的加量均为1%;热滚条件为140 ℃、16 h。 表 3 预处理油田水钻井液用降滤失剂的优选
降滤
失剂实验
条件AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mL0.5%PAC-LV 热滚前 21 19.0 2.0 热滚后 16 15.0 1.0 19.4 0.5%LV-CMC 热滚前 16 14.0 2.0 热滚后 13 12.0 1.0 15.6 0.5%SMPFL-C 热滚前 19 16.5 2.5 热滚后 16 15.0 1.0 12.4 2%改性淀粉SMART 热滚前 15 13.0 2.0 热滚后 13 11.5 1.5 9.2 2%羧甲基淀粉 热滚前 17 15.0 2.0 热滚后 12 11.0 1.0 16.4 2%预胶化淀粉 热滚前 18 16.0 2.0 热滚后 10 9.0 1.0 21.2 注:流变参数测试温度为50 ℃;热滚条件为140 ℃、16 h。 表 4 预处理油田水钻井液用流型调节剂的优选
配方 测试条件 AV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sFLAPI/
mL0.3%黄原胶 热滚前 35.0 21.0 14.0 0.67 热滚后 20.5 16.0 4.5 0.28 5.0 0.3%胍尔胶 热滚前 35.0 22.0 13.0 0.59 热滚后 24.0 19.0 5.0 0.26 4.6 0.3%SMRM-2 热滚前 49.0 25.0 24.0 0.96 热滚后 29.0 19.0 10.0 0.53 4.2 注:流变参数测试温度为50 ℃;热滚条件为140 ℃、16 h。 表 5 不同密度油田水无固相钻井液的性能
ρ/
g·cm−3测试
条件AV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sGel/
Pa/PaFLAPI/
mLFLHTHP/
mLKf 1.08 热滚前 39 23 16 0.70 5.0/5.5 热滚后 32 19 13 0.68 4.0/4.5 4.6 14.2 0.0437 1.12 热滚前 41 24 17 0.71 5.5/6.0 热滚后 29 17 12 0.71 4.5/5.0 4.8 13.6 0.0524 1.16 热滚前 41 26 15 0.58 4.5/5.5 热滚后 30 17 13 0.76 4.5/5.0 3.6 12.8 0.0524 1.30 热滚前 48.0 30 18.0 0.60 5.0/6.5 热滚后 33.5 21 12.5 0.60 5.0/6.0 2.2 10.2 1.50 热滚前 57.0 35 22.0 0.63 6.0/9.0 热滚后 45.0 30 15.0 0.50 6.0/8.5 1.4 8.4 注:流变参数测试温度为50 ℃;高温高压滤失量测试温度为140 ℃。 表 6 油田水无固相钻井液在不同热滚温度下的性能
T热滚/℃ ρ/(g·cm−3) AV/mPa·s PV/mPa·s YP/Pa YP/PV/(Pa/mPa·s) Gel/Pa/Pa FLAPI/mL FLHTHP/mL 140 1.16 40.5 21.0 19.5 0.93 4.5/5.0 3.6 12.8 150 1.16 37.5 21.0 16.5 0.79 3.0/4.0 6.0 18.6 160 1.16 29.0 17.0 12.0 0.71 1.5/3.0 10.4 35.2 注:流变参数测试温度为50 ℃;高温高压滤失量测试温度为140 ℃。 表 7 油田水无固相钻井液环保性能的评价结果
钻井液 EC50/(mg/L) BOD5/CODCr/% 聚磺钻井液体系 752 8.56 油田水无固相钻井液体系 28600 21.35 表 8 岩心流动实验仪动态渗透率恢复实验结果
钻井液 Kg/
10−3µm2Kw1/
10−3µm2Kw2/
10−3µm2R/
%聚磺钻井液体系 4.322 2.356 2.031 86.7 油田水无固相钻井液 6.102 2.103 1.912 91.8 表 9 TK-A井双保型油田水无固相钻井液的性能
井深/m ρ/(g·cm−3) FV/s PV/mPa·s YP/Pa YP/PV/(Pa/mPa·s) Gel/(Pa/Pa) FLAPI/mL FLHTHP/mL Vs/% Kf 6069.0 1.10 43 15 9 0.60 2.0/3.0 3.6 13.2 4 0.05 6158.4 1.10 44 16 10 0.63 3.0/4.0 4.2 13.8 4 0.05 6179.7 1.10 44 17 11 0.65 3.5/4.5 3.8 13.0 4 0.05 6244.8 1.16 44 18 12 0.67 3.0/4.0 4.0 14.0 6 0.05 6335.7 1.16 43 17 11 0.65 3.5/4.5 4.2 14.2 6 0.05 6404.4 1.16 45 19 11 0.58 3.0/4.5 4.4 14.0 6 0.05 6415.7 1.17 40 17 9 0.53 2.5/3.5 4.6 14.6 6 0.05 6447.6 1.17 39 16 8 0.50 2.0/4.0 4.2 14.2 6 0.05 -
[1] 康毅力,闫丰明,游利军,等. 塔河油田缝洞型储层漏失特诊及控制技术实践[J]. 钻井液与完井液,2010,27(1):41-43,46.KANG Yili, YAN Fengming, YOU Lijun, et al. Loss and control in vugular reservoir formations in block Tahe[J]. Drilling Fluid & Completion Fluid, 2010, 27(1):41-43,46. [2] 王伟志,刘庆来,郭新健,等. 塔河油田防漏堵漏技术综述[J]. 探矿工程(岩土钻掘工程),2019,46(3):42-46,50.WANG Weizhi, LIU Qinglai, GUO Xinjian, et al. Review of lost circulation prevention and plugging techniques in Tahe oilfield[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling) , 2019, 46(3):42-46,50. [3] 鲁新便,张宁,刘雅雯. 塔河油田奥陶系稠油油藏地质特征及开发技术对策探讨[J]. 新疆地质,2003,21(3):329-334.LU Xinbian, ZHANG Ning, LIU Yawen. Geological characteristics and discussion about technical develeopment strategies for ordovician heavy-oil reservoir in Tahe oilfield[J]. Xinjiang Geology, 2003, 21(3):329-334. [4] 舒勇,江路明,杨俊,等. 环保型复合降滤失剂的研制与应用[J]. 钻井液与完井液,2023,40(1):35-40. doi: 10.12358/j.issn.1001-5620.2023.01.004SHU Yong, JIANG Luming, YANG Jun, et al. Development and application of an environmentally friendly compound filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):35-40. doi: 10.12358/j.issn.1001-5620.2023.01.004 [5] 马磊,袁学强,张万栋,等. 乌石17-2油田强封堵合成基钻井液体系[J]. 钻井液与完井液,2022,39(5):558-564.MA Lei, YUAN Xueqiang, ZHANG Wandong, et al. A synthetic based drilling fluid with strong plugging capacity for block Wushi17-2[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):558-564. [6] 刘程,李锐,张光华,等. 新型无固相钻井液体系研究新进展[J]. 天然气工业,2009,29(11):64-66.LIU Cheng, LI Rui, ZHANG Guanghua. New progress in the research into a new type of solid-free drilling fluid system[J]. Natural Gas Industry, 2009, 29(11):64-66. [7] 由福昌,文华,吴娇,等. 高密度无土相油基钻井液[J]. 钻井液与完井液,2022,39(2):146-150.YOU Fuchang, WEN Hua, WU Jiao, et al. High density clay-free oil based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):146-150. [8] 邱正松,赵冲,张现斌,等. 超高温高密度油基钻井液研究与性能评价用[J]. 钻井液与完井液,2021,38(6):663-670.QIU Zhengsong, ZHAO Chong, ZHANG Xianbin, et al. Study and performance evaluation of ultra-high temperature high density oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):663-670. [9] 于志纲,张军,彭商平,等. 可降解甲酸盐钻井液的研究与应用[J]. 石油钻采工艺,2010,32(6):53-57.YU Zhigang, ZHANG Jun, PENG Shangping, et al. Research and application of decomposable formate base drilling fluid[J]. Oil Drilling & Production Technology, 2010, 32(6):53-57. [10] 张冬玲,薛玉志,马云谦,等. 无固相抗高温钻井完井液在渤深6 区块的应用[J]. 钻井液与完井液,2008,25(1):12-14.ZHANG Donglin, XUE Yuzhi, MA Yunqian, et al. The application of solids-free high temperature drilling fluid in block Boshen-6[J]. Drilling Fluid & Completion Fluid, 2008, 25(1):12-14. [11] 张荣,李自立,王洪伟. 无固相弱凝胶钻开液延时破胶技术研究[J]. 钻井液与完井液,2011,28(2):42-44. doi: 10.3969/j.issn.1001-5620.2011.02.012ZHANG Rong, LI Zili, WANG Hongwei. Research on delayed gelout technology of weak-gelled solid-free drill-in Fluid[J]. Drilling Fluid & Completion Fluid, 2011, 28(2):42-44. doi: 10.3969/j.issn.1001-5620.2011.02.012 [12] 褚奇, 张凤英, 孔勇, 等.一种疏水单体及基于该单体的无固相钻井液用增粘剂:CN201510420099.5[P]. 2017-01-25CHU Qi, ZHANG Fengying, KONG Yong, et al. The invention relates to a hydrophobic monomer and a viscosifier for solid-free drilling fluid based on the monomer: CN201510420099.5[P]. 2017-01-25 [13] 卢祥国,周彦霞,孙哲,等. 聚合物分子聚集体形态及其油藏适应性[J]. 大庆石油地质与开发,2015,34(6):88-94. doi: 10.3969/J.ISSN.1000-3754.2015.06.015LU Xiangguo, ZHOU Yanxia, SUN Zhe, et al. Configurations of the polymer molecular aggregateand their iul reservoir application[J]. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(6):88-94. doi: 10.3969/J.ISSN.1000-3754.2015.06.015 [14] 何剑,杨小华,王琳,等. 抗高温抗钙水溶性聚合物降滤失剂研究进展[J]. 中外能源,2016,21(7):32-35.HE Jian, YANG Xiaohua, WANG Lin, et al. Research progress of water-soluble polymeric filtrate reducer with high-temperature resistance and calcium tolerance[J]. Sino-global Energy, 2016, 21(7):32-35. [15] 杨双春,宋洪瑞,郭 奇,等. 钻井液用流型调节剂的研究进展[J]. 精细化工,2020,37(9):1744-1752. doi: 10.13550/j.jxhg.20200246YANG Shuangchun, SONG Hongrui, GUO Qi, et al. Research progress of rheology modifier for drilling fluids[J]. Fine Chemicals, 2020, 37(9):1744-1752. doi: 10.13550/j.jxhg.20200246 [16] 黄宁,吕开河,孙金声,等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405.HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405. [17] 张桓,罗春芝,张世录,等. 抗温抗污染油基钻井液乳化剂的研制及在阳101区块的应用[J]. 钻采工艺,2022,45(6):146-151.ZHANG Huan, LUO Chunzhi, ZHANG Shilu, et al. Development of anti-temperature and anti-pollution emulsifier for oil-based drilling fluid and its application in Yang101 Block[J]. Drilling & Production Technology, 2022, 45(6):146-151. [18] 王伟吉,高伟,范胜,等. 新型非磺化环保低摩阻钻井液[J]. 钻井液与完井液,2022,39(4):459-465.WANG Weiji, GAO Wei, FAN Sheng, et al. The development and application of a new environmentally friendly low friction non-sulfonate drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):459-465.
计量
- 文章访问数: 627
- HTML全文浏览量: 230
- PDF下载量: 122
- 被引次数: 0