留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机森林算法的油气层敏感性损害预测

盛科鸣 蒋官澄

盛科鸣,蒋官澄. 基于随机森林算法的油气层敏感性损害预测[J]. 钻井液与完井液,2023,40(4):423-430 doi: 10.12358/j.issn.1001-5620.2023.04.002
引用本文: 盛科鸣,蒋官澄. 基于随机森林算法的油气层敏感性损害预测[J]. 钻井液与完井液,2023,40(4):423-430 doi: 10.12358/j.issn.1001-5620.2023.04.002
SHENG Keming, JIANG Guancheng.Prediction of four kinds of sensibility damages to hydrocarbon reservoirs based on random forest algorithm[J]. Drilling Fluid & Completion Fluid,2023, 40(4):423-430 doi: 10.12358/j.issn.1001-5620.2023.04.002
Citation: SHENG Keming, JIANG Guancheng.Prediction of four kinds of sensibility damages to hydrocarbon reservoirs based on random forest algorithm[J]. Drilling Fluid & Completion Fluid,2023, 40(4):423-430 doi: 10.12358/j.issn.1001-5620.2023.04.002

基于随机森林算法的油气层敏感性损害预测

doi: 10.12358/j.issn.1001-5620.2023.04.002
基金项目: 国家自然科学基金青年科学基金项目“智能钻井液聚合物处理剂刺激响应机理与分子结构设计方法研究”(52004297);中国博士后创新人才支持计划“大温差智能响应机理及智能恒流变无土相生物油基钻井液研究”(BX20200384)。
详细信息
    作者简介:

    盛科鸣,在读博士研究生,1997年生,研究方向为油气工程信息化与智能化技术。E-mail: keming@student.cup.edu.cn。

    通讯作者:

    蒋官澄,博士,二级教授,1966年生,研究领域为油田化学、储层保护等。E-mail: jgc5786@126.com。

  • 中图分类号: TE258

Prediction of Four Kinds of Sensibility Damages to Hydrocarbon Reservoirs Based on Random Forest Algorithm

  • 摘要: 储层损害贯穿在油气田勘探开发的各个时期,其种类繁多、损害机理十分复杂。传统岩心流动实验评价储层敏感性的结果可靠,但岩心获取成本高、投入时间和成本大。调研和实践表明,利用神经网络、随机森林等算法基于小规模样本建立的模型可以实现对样本的预测,节约时间和经济成本。基于X区块敏感性室内评价小规模样本资料,选择训练集及测试集,深入对比了BP神经网络算法、径向基函数神经网络算法、随机森林算法,优选出随机森林算法作为储层敏感性损害定量诊断的主要方法,采用网格搜索等算法进行了超参数优化、根据因素权重对数据进行降维,以此提高预测精度,搭建了完整的模型。4种损害模型的R2平均值为0.852,预测精度在90.00%~95.68%。

     

  • 图  1  随机森林网络结构

    图  2  速敏Pearson相关矩阵

    图  3  速敏Spearman相关矩阵

    图  4  4种方法下BP神经网络迭代次数

    图  5  4种模型的RBF神经网络迭代次数

    图  6  网格搜索结果

    图  7  速敏模型因素权重

    图  8  3种算法的RMSE

    图  9  3种算法的R2平均大小

    表  1  4类BP神经网络的神经元个数

    神经网络层速敏水敏酸敏碱敏
    输入层14141412
    隐藏层24242323
    输出层2212
    下载: 导出CSV

    表  2  训练集与测试集的划分

    敏感性类型速敏水敏酸敏碱敏
    训练集111156163148
    测试集11151614
    下载: 导出CSV

    表  3  速敏预测结果

    序号速敏指数临界流速
    真实值预测值误差/%真实值预测值误差/%
    143.2443.91431.560.500.53046.08
    223.323.23870.265.005.12062.41
    327.026.74700.940.500.52134.26
    435.038.843610.980.500.561912.38
    554.049.75897.850.250.27038.12
    下载: 导出CSV

    表  4  预测结果

    损害类型MSE/%精确度/%
    速敏4.31895.68
    水敏10.00490.00
    酸敏6.98493.02
    碱敏6.00894.00
    下载: 导出CSV
  • [1] 谢金秀. 储层敏感性实验与机制研究[J]. 石化技术,2021,28(1):139-140.

    XIE Jinxiu. Reservoir sensitivity experiment and mechanism research[J]. Petrochemical Technology, 2021, 28(1):139-140.
    [2] 肖玉茹,何峰煜. 塔里木盆地北部西达里亚油气田三叠系储层敏感性评价[J]. 新疆地质,1996(4):364-374.

    XIAO Yuru, HE Fengyu. Appraisal of sensitivity of triassic reservior of west Daliya oil-gas field in northern Tarim basin[J]. Xinjiang Geology, 1996(4):364-374.
    [3] 孙建孟,李召成,谭未一. 用单相关分析法快速预测储层敏感性[J]. 钻井液与完井液,1999(1):4-8.

    SUN Jianmeng, LI Zhaocheng, TAN Weiyi. Rapidly predicating the formation-sensitivity with analysing method of single correlation[J]. Drilling Fluid & Completion Fluid, 1999(1):4-8.
    [4] 王峰,向祖平,陈中华,等. 利用响应曲面法校正气藏储层应力敏感性曲线[J]. 西南石油大学学报(自然科学版),2010,32(5):96-99,190.

    WANG Feng, XIANG Zuping, CHEN Zhonghua, et al. Correction of stress sensitivity curve of gas reservoir by response surface method[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(5):96-99,190.
    [5] LIU Y L, RUI Z H. A storage-driven CO2 EOR for a net-zero emission target[J]. Engineering, 2022, 18: 79-87.
    [6] MUNGAN N. Permeability reduction through changes in pH and salinity[J]. Journal of Petroleum Technology, 1965, 17(12):1449-1453.
    [7] BRYANT S L, BULLER D C. Formation damage from acid treatments[J]. SPE Production Engineering, 1990, 5(4):455-460. doi: 10.2118/17597-PA
    [8] 彭春耀,鄢捷年,李玉凤. 预测储层潜在敏感性损害的新方法[J]. 钻井液与完井液,1999(2):4-10.

    PENG Chunyao, YAN Jienian, LI Yufeng. New ways of predicting reservoir damage of potential sensitivity[J]. Drilling Fluid & Completion Fluid, 1999(2):4-10.
    [9] 张玄奇. 储层敏感性的灰色评价[J]. 大庆石油地质与开发,2004,23(6):60-62.

    ZHANG Xuanqi. Grey evaluation of reservoir sensitivity[J]. Petroleum Geology & Oilfield Development in Daqing, 2004, 23(6):60-62.
    [10] AL-MUDHAFAR W J, RAO D N, SRINIVASAN S. Reservoir sensitivity analysis for heterogeneity and anisotropy effects quantification through the cyclic CO2-assisted gravity drainage EOR process-a case study from south Rumaila oil field[J]. Fuel, 2018, 221:455-468.
    [11] ALEGRE L. An investigation of the applicability of expert systems to diagnose formation damage problems[J]. Los Angeles: University of Southern California, 1988.
    [12] 郭建明,李棋,薄春生,等. 保护储集层综合集成决策支持系统的研制与应用[J]. 石油工业计算机应用,1995(3):22-28,32.

    GUO Jianming, LI Qi, BO Chunsheng, et al. Development and application of integrated decision support system for reservoir protection[J]. Computer Applications of Petroleum, 1995(3):22-28,32.
    [13] 梅文荣,张绍槐. 基于神经网络的地层损害识别研究[J]. 西安石油学院学报(自然科学版),1995(1):46-49.

    MEI Wenrong, ZHANG Shaohuai. The research on the recognition of formation damage based on artificial neural network[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 1995(1):46-49.
    [14] 刘宝锋. 基于人工神经网络的超深井储层敏感性预测[D]. 青岛:中国石油大学(华东),2009.

    LIU Baofeng. The sensitivity prediction of the ultra-deep reservior based on artificial neural network[D]. Qingdao: China University of Petroleum (East China), 2009.
    [15] 黄春,蒋官澄,纪朝凤,等. 基于径向基函数(RBF)神经网络的储层损害诊断技术研究[J]. 应用基础与工程科学学报,2010,18(2):313-320.

    HUANG Chun, JIANG Guancheng, JI Chaofeng, et al. Research on the formation damage diagnosis based on radial basis functions neural network[J]. Journal of Basic Science and Engineering, 2010, 18(2):313-320.
    [16] 蒋官澄,王晓军,吴雄军,等. 模式识别在储层敏感性预测中的应用[J]. 油气地质与采收率,2010,17(5):61-64.

    JIANG Guancheng, WANG Xiaojun, WU Xiongjun, et al. Application of pattern recognition in the prediction of reservoir sensitivity[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(5):61-64.
    [17] 孙玉学,谢建波,才庆. 应用量子神经网络预测低渗储层水锁损害[J]. 特种油气藏,2012,19(6):53-55.

    SUN Yuxue, XIE Jianbo, CAI Qing. Prediction of water lock damage in low permeability reservoirs using quantum neural network[J]. Special Oil & Gas Reservoirs, 2012, 19(6):53-55.
    [18] 高磊,潘树林. 基于遗传神经网络的储层敏感性预测方法研究[J]. 物探化探计算技术,2012,34(4):486-489.

    GAO Lei, PAN Shulin. Study on reservoir sensitivity prediction method based on genetic neural network[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012, 34(4):486-489.
    [19] JIANG G C, SUN J S, HE Y B, et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs[J]. Engineering, 2021, 18:129-142.
    [20] 许洁,许林,李习文,等. 新型储层钻井完井一体化工作液设计及性能评价[J]. 钻井液与完井液,2023,40(2):184-192. doi: 10.12358/j.issn.1001-5620.2023.02.006

    XU Jie, XU Lin, LI Xiwen, et al. Design and evaluation of an integrated drilling and completion fluid[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):184-192. doi: 10.12358/j.issn.1001-5620.2023.02.006
    [21] BREIMAN L. Random forest[J]. Machine Learning, 2001, 45(1):5-32. doi: 10.1023/A:1010933404324
    [22] RODGERS J L, NICEWANDER W A. Thirteen ways to look at the correlation coefficient[J]. The American Statistician, 1988, 42(1):59-66.
    [23] KRUSKAL W H. Ordinal measures of association[J]. Journal of the American Statistical Association, 1958, 53(284): 814-861.
    [24] SPEARMAN C. The proof and measurement of association between two things[J]. International Journal of Epidemiology, 2010, 39(5): 1137-1150.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  521
  • HTML全文浏览量:  203
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 修回日期:  2023-03-14
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回