Study on Methods of Gas Hydrate Inhibition and Blockage Treatment Using Seawater Polymer Muds in Deepwater Well Drilling
-
摘要: 在南海西部深水钻井过程中对于水合物的防治过于保守,使用的水合物抑制钻井液——HEM钻井液成本高,钻速低。为了降低钻井液成本,缩短钻井周期,针对深水钻井过程中低成本聚合物钻井液下水合物生成堵塞风险与处理方法问题, 结合南海莺琼盆地BD区块钻井情况,对聚合物钻井液下不同气体组分的水合物生成相平衡曲线,不同工况下水合物生成区域,井筒水合物堵塞处理等开展了研究,得到不同工况下井筒水合物生成风险区域,优选了动力学抑制剂聚M-乙烯基己内酰胺作为水合物生成抑制剂,热力学抑制剂乙二醇作为水合物堵塞解堵剂,并在室内设计形成10种新型动力学抑制剂,其中动力学抑制剂DS-A3对水合物的生成有良好的抑制效果。实验研究以及BD某井现场应用表明:①在正常钻井循环、压井、关井工况下没有水合物生成区域,不会有水合物生成堵塞风险;②综合考虑抑制效果与成本,0.8%聚M-乙烯基己内酰胺对井筒水合物的抑制效果最好,45%的乙二醇对于解除井筒水合物堵塞风险效果最好;③在没有特殊复杂井下工况情况下,只要停钻时间不超过15 h,可以直接使用聚合物钻井液进行深水钻井,平均单井钻井液成本下降50%~70%,创造良好的经济效益。Abstract: The methods of preventing and curing gas hydrate in deepwater drilling are too preservative. In the west of the South China Sea, the gas hydrate inhibitive drilling fluid HEM used in the deepwater drilling is quite expensive and the penetration rate is low. To reduce the mud cost and shorten the drilling time, several issues were studied, including the phase equilibrium curves of hydrate generation with different gas components, the regions for gas hydrate generation under different operating conditions, and the methods of dealing with borehole blockage by the gas hydrates. All these studies were conducted with the low cost polymer drilling fluids used in the deepwater drilling in the BD block in the Yinggehai basin (South China Sea). Potential regions for the generation of gas hydrates under different operating conditions were obtained. Based on these studies, poly (M-vinyl caprolactam) was selected as the kinetic gas hydrate inhibitor to inhibit the generation of gas hydrates glycol selected as the thermodynamic inhibitor to remove blockage in a wellbore by gas hydrates. Ten new kinetic inhibitors were designed in laboratory study, of which the DS-A3 inhibitor has good inhibitive capacity for gas hydrate generation. Laboratory study and field (block BD) application showed that: 1) in operating conditions such as normal drilling, circulation and well shut-in, no gas hydrate generation region exists, as such, there is no risks of wellbore blockage. 2) Considering the inhibitive effect and cost together, 0.8% poly (M-vinyl caprolactam) has the best inhibitive effect for gas hydrate generation, and 45% glycol has the best effect for removing blockage of a wellbore by gas hydrate. 3) When there are no complex downhole operating conditions, if the rig down time does not exceed 15 hours, polymer drilling fluids can be directly used in deepwater drilling. In this way the drilling fluid cost for a single well can be reduced by 50%-70%, a good economic benefit.
-
Key words:
- Deepwater drilling /
- Polymer drilling fluid /
- Natural gas hydrate /
- Generate blockage /
- Inhibitors /
- Processing method
-
表 1 常压低温下水合物在乙二醇和聚M-乙烯基己内酰胺中的分解时间(0.1 MPa,2.1 ℃)
乙二醇/
%分解时间/
min聚M-乙烯基
己内酰胺/%分解时间/
min0 20.67 0 21.42 30 12.32 0.3 20.77 35 9.27 0.5 19.37 40 8.78 0.8 18.77 45 8.33 1.0 17.57 50 8.52 1.5 17.43 -
[1] 李中,陈浩东,刘和兴,等. 深水窄密度窗口地层封堵承压钻井液技术[J]. 钻井液与完井液,2021,38(4):428-434.LI Zhong, CHEN Haodong, LIU Hexing, et al. Drilling fluid technology for plugging and strengthening formations with narrow mud weight windows in deep water drilling[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):428-434. [2] 高德利. 深海天然气及其水合物开发模式与钻采技术探讨[J]. 天然气工业,2020,40(8):169-176. doi: 10.3787/j.issn.1000-0976.2020.08.014GAO Deli. Discussin on development modes and engineering techniques for deepwater natural gas and its hydrates[J]. Natural Gas Industry, 2020, 40(8):169-176. doi: 10.3787/j.issn.1000-0976.2020.08.014 [3] 陈玉凤,李栋梁,梁德青,等. 南海沉积物天然气水合物饱和度与电阻率的关系[J]. 石油学报,2013,34(3):507-512. doi: 10.7623/syxb201303012CHENG Yufeng, LI Dongliang, LIANG Deqing, et al. Relationship between gas hydrate saturation and resistivity in sediments of the south China sea[J]. Acta Petrolei Sinica, 2013, 34(3):507-512. doi: 10.7623/syxb201303012 [4] 白小东,黄进军,徐赋海,等. 钻井液组分对气体水合物的影响[J]. 钻井液与完井液,2005(Z1):50-52. doi: 10.3969/j.issn.1001-5620.2005.z1.017BAI Xiaodong, HUANG Jinjun, XU Fuhai, et al. Influence of drilling fluid components on gas hydrate[J]. Drilling Fluid & Completion Fluid, 2005(Z1):50-52. doi: 10.3969/j.issn.1001-5620.2005.z1.017 [5] KVAMME B, BAIG K, QASIM M, et al. Thermodynamic and kinetic modeling of CH4/CO2 hydrates phase transitions[J]. International Journal of Energy and Environment, 2013, 7:1-8. [6] RAO I, KOH C A, SLOAN E D, et al. Gas hydrate deposition on a cold surface in water-saturated gas systems[J]. Industrial & Engineering Chemistry Research, 2013, 52(18):6262-6269. [7] 马永乐,张勇,刘晓栋,等. 海域天然气水合物低温抑制性钻井液体系[J]. 钻井液与完井液,2021,38(5):544-551, 559.MA Yongle, ZHANG Yong, LIU Xiaodong, et al. A drilling fluid which inhibits formation of natural gas hydrate at low temperatures in offshore drilling[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):544-551, 559. [8] 张文彬,王洪伟,王雪松. HEM钻井液室内研究与在BD气田的成功应用[J]. 非常规油气,2018,5(3):80-83,79. doi: 10.3969/j.issn.2095-8471.2018.03.013ZHANG Weibing, WANG Hongwei, WANG Xuesong, et al. Laboratory study of HEM drilling fluid and successfully application in bd project[J]. Unconventional Oil & Gas, 2018, 5(3):80-83,79. doi: 10.3969/j.issn.2095-8471.2018.03.013 [9] 宫敬,史博会,陈玉川,等. 含天然气水合物的海底多相管输及其堵塞风险管控[J]. 天然气工业,2020,40(12):133-142. doi: 10.3787/j.issn.1000-0976.2020.12.015GONG Jing, SHI Bohui, CHEN Yuchuan, er al. Submarine multiphase pipeline transport containing natural gas hydrate and its plugging risk prevention and control[J]. Natural Gas Industry, 2020, 40(12):133-142. doi: 10.3787/j.issn.1000-0976.2020.12.015 [10] 郭磊,李怀科,罗健生. 深水HEM高温高压钻井液体系研究与应用[J]. 钻采工艺,2017,40(1):99-101. doi: 10.3969/J.ISSN.1006-768X.2017.01.28GUO Lei, LI Huaike, LUO Jiansheng. Research and application of deepwater HEM high-temperature and high-pressure drilling fluid system[J]. Drilling & Production Technology, 2017, 40(1):99-101. doi: 10.3969/J.ISSN.1006-768X.2017.01.28 [11] 赵欣,邱正松,江琳,等. 深水钻井液高效水合物抑制剂研究[J]. 中国石油大学学报(自然科学版),2013,37(6):159-164.ZHAO Xin, QIU Zhengsong, JIANG lin, et al. Study on high performance gas hydrate inhibitor in deepwater drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science) , 2013, 37(6):159-164. [12] 徐加放,邱正松,何畅. 深水钻井液中水合物抑制剂的优化[J]. 石油学报,2011,32(1):149-152. doi: 10.7623/syxb201101025XU Jiafang, QIU Zhengsong, HE Chang. The inhibitor optimization of gas hydrates in deepwater drilling fluids[J]. Acta Petrolei Sinica, 2011, 32(1):149-152. doi: 10.7623/syxb201101025 [13] HE Y, ZHOU X B, SHI L L, et al. Study on the hydrate inhibition effect of nano-silica in drilling fluids[J]. Journal of Natural Gas Science and Engineering, 2022, 105:104688. doi: 10.1016/j.jngse.2022.104688 [14] LIU T, JIANG G, ZHANG P, et al. A new low-cost drilling fluid for drilling in natural gas hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2016, 33:934-941. doi: 10.1016/j.jngse.2016.06.017 [15] REN S R, LIU Y J, LIU Y X, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2010, 70(1/2):52-56. doi: 10.1016/j.petrol.2009.09.001 [16] 张亮,张崇,黄海东,等. 深水钻完井天然气水合物风险及预防措施——以南中国海琼东南盆地QDN-X井为例[J]. 石油勘探与开发,2014,41(6):755-762. doi: 10.11698/PED.2014.06.17ZHANG Liang, ZHANG Chong, HUANG Haidong, et al. Gas hydrate risks and prevention for deep water drilling and completion: A case study of well QDN-X in Qiongdongnan basin, south China sea[J]. Petroleum Exploration and Development, 2014, 41(6):755-762. doi: 10.11698/PED.2014.06.17 [17] 张金华,樊波,刘瑞江. 天然气水合物钻探现状与钻井技术[J]. 科学技术与工程,2020,20(35):14343-14351. doi: 10.3969/j.issn.1671-1815.2020.35.001ZHANG Jinhua, FAN Bo, LIU Ruijiang. Current status and technology of natural gas hydrate drilling[J]. Science Technology and Engineering, 2020, 20(35):14343-14351. doi: 10.3969/j.issn.1671-1815.2020.35.001 [18] 宫智武,张亮,程海清,等. 海底天然气水合物分解对海洋钻井安全的影响[J]. 石油钻探技术,2015,43(4):19-24. doi: 10.11911/syztjs.201504004GONG Zhiwu, ZAHNG Liang, CHENG Haiqing, et al. The influence of subsea natural gas hydrate dissociation on the safety of offshore drilling[J]. Petroleum Drilling Techniques, 2015, 43(4):19-24. doi: 10.11911/syztjs.201504004 [19] 张凯,吕秋楠,李刚,等. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展,2022:1-11.ZHANG Kai, LYU Qiunan, LI Gang, et al. SEM-EDS analysis of methane hydrate in sediments[J]. Chemical Industry and Engineering Progress, 2022:1-11. [20] DING L, SHI B H, LYU X F, et al. Hydrate formation and plugging mechanisms in different gas–liquid flow patterns[J]. Industrial & Engineering Chemistry Research, 2017, 56(14):4173-4184. [21] 蒋东雷,黄熠,孟文波,等. 深水井筒水合物生成风险预测[J]. 价值工程,2021,40(15):194-196. doi: 10.3969/j.issn.1006-4311.2021.15.082JIANG Donglei, HUANG Yi, MENG Wenbo, et al. Risk prediction of hydrate formation in deepwater wellbore[J]. Value Engineering, 2021, 40(15):194-196. doi: 10.3969/j.issn.1006-4311.2021.15.082 [22] ZHANG J B, WANG Z Y, LIU S, et al. Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety[J]. Applied Energy, 2019, 253:113521. doi: 10.1016/j.apenergy.2019.113521 [23] KE W, CHEN D Y. A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists[J]. Chinese Journal of Chemical Engineering, 2019, 27(9):2049-2061. doi: 10.1016/j.cjche.2018.10.010 [24] 毕曼,贾增强,吴红钦,吴付洋. 天然气水合物抑制剂研究与应用进展[J]. 天然气工业,2009,29(12):75-78,147. doi: 10.3787/j.issn.1000-0976.2009.12.024BI Man, JIA Zengqiang, WU Hongqin, et al. Update progress in research and application of natural gas hydrate inhibitor[J]. Natural Gas Industry, 2009, 29(12):75-78,147. doi: 10.3787/j.issn.1000-0976.2009.12.024 [25] ZHAO X, QIU Z S, ZHAO C, et al. Inhibitory effect of water-based drilling fluid on methane hydrate dissociation[J]. Chemical Engineering Science, 2019, 199:113-122. doi: 10.1016/j.ces.2018.12.057 [26] 黄鑫,王海波,张乐,等. 天然气水合物藏开采增产技术研究进展[J]. 科学技术与工程,2022,22(9):3405-3415. doi: 10.3969/j.issn.1671-1815.2022.09.001HUANG Xin, WANG Haibo, ZHANG Le, et al. Review of production increasing technology of natural gas hydrate[J]. Science Technology and Engineering, 2022, 22(9):3405-3415. doi: 10.3969/j.issn.1671-1815.2022.09.001 [27] 李波. 高效环保水合物解堵剂的实验研究[D]. 广州: 华南理工大学, 2011.LI Bo. Study of the efficient and environmental hydrate plugging remover[D]. GuangZhou: South China University of Technology, 2011.