留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低渗透气藏有机硅防水锁剂的制备与性能评价

郭璇 孙金声 吕开河 金家锋

郭璇,孙金声,吕开河,等. 低渗透气藏有机硅防水锁剂的制备与性能评价[J]. 钻井液与完井液,2023,40(2):156-162 doi: 10.12358/j.issn.1001-5620.2023.02.002
引用本文: 郭璇,孙金声,吕开河,等. 低渗透气藏有机硅防水锁剂的制备与性能评价[J]. 钻井液与完井液,2023,40(2):156-162 doi: 10.12358/j.issn.1001-5620.2023.02.002
GUO Xuan, SUN Jinsheng, LYU Kaihe, et al.Preparation and evaluation of an organosilicon water block inhibitor for low permeability gas reservoirs[J]. Drilling Fluid & Completion Fluid,2023, 40(2):156-162 doi: 10.12358/j.issn.1001-5620.2023.02.002
Citation: GUO Xuan, SUN Jinsheng, LYU Kaihe, et al.Preparation and evaluation of an organosilicon water block inhibitor for low permeability gas reservoirs[J]. Drilling Fluid & Completion Fluid,2023, 40(2):156-162 doi: 10.12358/j.issn.1001-5620.2023.02.002

低渗透气藏有机硅防水锁剂的制备与性能评价

doi: 10.12358/j.issn.1001-5620.2023.02.002
基金项目: 中国石油天然气集团公司“十四五”前瞻性基础性重大科技项目课题“复杂油气藏储层保护机理与调控技术研究”(2021DJ4402)
详细信息
    作者简介:

    郭璇,在读硕士研究生,主要从事钻井液技术研究工作。电话13061235103;E-mail:616970122@qq.com

    通讯作者:

    孙金声,1965年生,博士,中国工程院院士,主要从事钻井液、储集层保护、天然气水合物钻采理论与技术等方面的研究工作。E-mail:sunjinsheng@petrochina.com.cn

  • 中图分类号: TE258

Preparation and Evaluation of an Organosilicon Water Block Inhibitor for Low Permeability Gas Reservoirs

  • 摘要: 针对低渗透气藏钻完井过程中因水相侵入引发的水锁损害问题,以双端含氢硅油(DHSO)、烯丙基缩水甘油醚(AGE)、三甲胺盐酸盐(TMHC)等为原料,通过硅氢加成反应和环氧基开环反应合成了一种阳离子有机硅表面活性剂DAT,并复配消泡剂等助剂,构建了有机硅防水锁剂DAH。使用傅里叶红外光谱和核磁共振氢谱对合成产物进行表征,其分子结构符合预期设计;通过表面张力测定、岩心接触角实验、岩心自吸实验、岩心驱替实验等对防水锁剂DAH的性能进行评价。结果表明:1%DAH溶液的表面张力大幅下降至21.28 mN/m;经1%DAH溶液处理后,水相接触角由20°提高至110°,岩心自吸水量下降83.1%,渗透恢复率提高至82.68%。该防水锁剂DAH可大幅降低水相表面张力,能够通过静电作用在岩心表面形成致密吸附膜,将岩心表面润湿性由亲水性反转为疏水性,减少了钻完井过程中的水相侵入,并有助于水相返排,具有优异的降低水锁损害功效,对保护低渗储层产能具有重要意义。

     

  • 图  1  DHSO、DEPS、DAT的红外光谱图

    图  2  DAT的核磁共振氢谱图

    图  3  DAH与常用防水锁剂对蒸馏水表面张力的影响

    图  4  DAH处理后砂岩表面的水相接触角

    图  5  岩心自吸水量与时间的关系曲线

    图  6  岩心自吸速率随时间的变化曲线

    图  7  不同浓度DAH溶液的Zeta电位

    图  8  DAH处理前后岩心表面EDS能谱分析

    图  9  DAH处理前后岩心表面形貌

    表  1  正交实验优化反应条件

    序号单体物质
    的量比
    T反应/
    t反应/
    h
    催化剂/
    %
    转化率/
    %
    11∶2.07540.00280.36
    21∶2.08550.00389.45
    31∶2.09560.00488.72
    41∶2.27550.00484.33
    51∶2.28560.00292.36
    61∶2.29540.00385.34
    71∶2.47560.00385.15
    81∶2.48540.00487.72
    91∶2.49550.00283.17
    k186.17783.28084.47385.297
    k287.34389.84385.65086.647
    k385.34785.74388.74386.923
    R1.9966.5634.2701.626
    下载: 导出CSV

    表  2  岩心流动实验结果

    岩心
    编号
    Kg1/
    mD
    饱和
    液体
    Kg2/
    mD
    渗透率
    恢复率/%
    残余水
    饱和度/%
    CQ1-11.215模拟地
    层水
    0.27822.8867.98
    CQ1-21.2591%DAH
    溶液
    1.04182.6842.35
    下载: 导出CSV

    表  3  DAH处理前后岩心表面元素含量分析

    样品原子百分比/%
    SiOCNAlMgFeNaKCa
    未处理15.5445.3725.513.93.431.212.841.330.590.28
    处理后20.139.4730.526.930.510.671.330.250.22
    下载: 导出CSV
  • [1] 李鹭光. 中国天然气工业发展回顾与前景展望[J]. 天然气工业,2021,41(8):1-11.

    LI Luguang. Development of natural gas industry in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8):1-11.
    [2] 盛军,孙卫,段宝虹,等. 致密砂岩气藏水锁效应机理探析——以苏里格气田东南区上古生界盒8段储层为例[J]. 天然气地球科学,2015,26(10):1972-1978.

    SHENG Jun, SUN Wei, DUAN Baohong, et al. Water lock effect mechanism of tight sandstone gas reservoir: an example of the he 8 reservoir of the upper paleozoic in the southeast region of sulige gasfield[J]. Natural Gas Geoscience, 2015, 26(10):1972-1978.
    [3] 唐海,吕渐江,吕栋梁,等. 致密低渗气藏水锁影响因素研究[J]. 西南石油大学学报(自然科学版),2009,31(4):91-94.

    TANG Hai, LYU Jianjiang, LYU Dongliang, et al. Study on influencing factors of water blocking effect on tight gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(4):91-94.
    [4] 柯从玉,魏颖琳,张群正,等. 低渗透气藏水锁伤害及解水锁技术研究进展[J]. 应用化工,2021,50(6):1613-1617.

    KE Congyu, WEI Yinglin, ZHANG Qunzheng, et al. Progress of water lock damage and water lock release technology in low permeability gas reservoir[J]. Applied Chemical Industry, 2021, 50(6):1613-1617.
    [5] HOSEINPOUR S-A, MADHI M, NOROUZI H, et al. Condensate blockage alleviation around gas-condensate producing wells using wettability alteration[J]. Journal of Natural Gas Science and Engineering, 2019, 62:214-223. doi: 10.1016/j.jngse.2018.12.006
    [6] 张琰,崔迎春. 砂砾性低渗气层水锁效应及减轻方法的试验研究[J]. 地质与勘探,2000(1):91-94.

    ZHANG Yan, CUI Yingchun. Experimental study on the aqueous phase trapping of low-permeability gas sands[J]. Geology and Exploration, 2000(1):91-94.
    [7] 欧彪,梁大川,孙勇,等. 低渗透气藏防水锁剂FS研究及效果评价[J]. 钻采工艺,2014,37(3):98-100.

    OU Biao, LIANG Dachuan, SUN Yong et al. Study and evaluation of anti-water blocking agent used in low permeability gas reservoir[J]. Drilling & Production Technology, 2014, 37(3):98-100.
    [8] 贾云林,刘建忠,李燕,等. 低渗储层新型防水锁剂试验研究[J]. 石油天然气学报,2013,35(7):108-113.

    JIA Yunlin, LIU Jianzhong, LI Yan, et al. Experimental study on a novel water-lock prevention agent for low-permeability reservoirs[J]. Journal of Oil and Gas Technology, 2013, 35(7):108-113.
    [9] 孔祥双. 新型有机硅表面活性剂的合成及其性能研究[D]. 中国石油大学(华东), 2014.

    KONG Xiangshuang. Synthesis and interfacial properties of novel silicone surfactants[D]. China University of Petroleum (East China), 2014.
    [10] 银燕. 自乳化型聚醚改性聚硅氧烷消泡剂的研制[D]. 杭州: 浙江大学, 2006.

    YIN Yan. Synthesis of a self-emulsification defoaming agent siloxane-oxyalkylene copolymers[D]. Zhejiang University, 2006.
    [11] 李颖颖,蒋官澄,宣扬,等. 低孔低渗储层钻井液防水锁剂的研制与性能评价[J]. 钻井液与完井液,2014,31(2):9-12.

    LI Yingying, JIANG Guancheng, XUAN yang, et al. Development and evaluation of water block prevention agent for drilling fluid used in low porosity low permeability reservoirs[J]. Drilling Fluid & Completion Fluid, 2014, 31(2):9-12.
    [12] 邱正松,董兵强,钟汉毅,等. 页岩储层保护用O/W纳米乳液的制备[J]. 化工学报,2015,66(11):4565-4571.

    QIU Zhengsong, DONG Bingqiang, ZHONG Hanyi, et al. Preparation of oil-in-water nanoemulsions used for protection of shale gas reservoirs[J]. CIESC Journal, 2015, 66(11):4565-4571.
    [13] 秦建建,薛玉志,裴梅山,等. 生物表面活性剂解水锁的室内研究[J]. 钻井液与完井液,2010,27(6):8-11.

    QIN Jianjian, XUE Yuzhi, PEI Meishan, et al. Laboratory study on cleaning up water block by bio-surfactants[J]. Drilling Fluid & Completion Fluid, 2010, 27(6):8-11.
    [14] 李轩. 苏东区块低渗砂岩气藏水锁损害规律及防水锁剂研究[D]. 青岛: 中国石油大学(华东), 2019.

    LI Xuan. Study on damage and cleanup of water blocks in low permeability sandstone reservoirs in sudong block[D]. China University of Petroleum (East China), 2019.
    [15] 李继山,姚同玉,刘先贵. 砂岩表面zeta电位与渗流过程的关系[J]. 西北大学学报(自然科学版),2005(4):459-462.

    LI Jishan, YAO Tongyu, LIU Xiangui. The relationship between zeta potential of sandstone surface and porous flow process[J]. Journal of Northwest University (Natural Science Edition), 2005(4):459-462.
    [16] ZHANG Y, ZENG J, QIAO J, et al. Investigating the Effect of the Temperature and Pressure on Wettability in Crude Oil–Brine–Rock Systems[J]. Energy & Fuels, 2018, 32(9):9010-9019.
    [17] JIANG G, LI Y, ZHANG M. Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media[J]. Petroleum Science, 2013, 10(4):515-527. doi: 10.1007/s12182-013-0303-4
    [18] 王婧婷. 主链含有机硅氧烷联苯聚芳醚砜材料的制备与性能研究[D]. 长春: 吉林大学, 2019.

    WANG Jingting. Preparation and properties of poly(aryl ether sulfone) copolymers containing organo-siloxane and biphenyl structure in the backbones[D]. Jilin University, 2019.
    [19] 薛崤,张晖,朱宏伟,等. 长效超疏水纳米复合材料研究进展[J]. 中国科学: 物理学,力学,天文学,2018,48(9):48-64.

    XUE Xiao, ZHANG Hui, ZHU Hongwei, et al. Durable superhydrophobic nanocomposite materials[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(9):48-64.
    [20] 张国栋,韩富,张高勇. 新型三硅氧烷表面活性剂的合成与界面性能[J]. 化学学报,2006(11):1205-1208.

    ZHANG Guodong, HAN Fu, ZHANG Gaoyong. Synthesis and interfacial properties of a new family of trisiloxanes[J]. Acta Chimica Sinica, 2006(11):1205-1208.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  212
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2022-12-25
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回