留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油酸酰胺型润滑剂在铁表面减摩作用

张顺从 戴尧 徐浩 王继乾 卢福伟 刘桂英

张顺从,戴尧,徐浩,等. 油酸酰胺型润滑剂在铁表面减摩作用[J]. 钻井液与完井液,2022,39(5):596-600 doi: 10.12358/j.issn.1001-5620.2022.05.010
引用本文: 张顺从,戴尧,徐浩,等. 油酸酰胺型润滑剂在铁表面减摩作用[J]. 钻井液与完井液,2022,39(5):596-600 doi: 10.12358/j.issn.1001-5620.2022.05.010
ZHANG Shuncong, DAI Yao, XU Hao, et al.Friction reduction of oleamide lubricants on iron surface[J]. Drilling Fluid & Completion Fluid,2022, 39(5):596-600 doi: 10.12358/j.issn.1001-5620.2022.05.010
Citation: ZHANG Shuncong, DAI Yao, XU Hao, et al.Friction reduction of oleamide lubricants on iron surface[J]. Drilling Fluid & Completion Fluid,2022, 39(5):596-600 doi: 10.12358/j.issn.1001-5620.2022.05.010

油酸酰胺型润滑剂在铁表面减摩作用

doi: 10.12358/j.issn.1001-5620.2022.05.010
基金项目: 中石化江苏油田局级项目“重点探区地层压力剖面建立与应用研究”(JS22030)
详细信息
    作者简介:

    张顺从,硕士研究生,现在主要从事钻井液技术研究工作。电话(0716)8060442;E-mail:376049553@qq.com

    通讯作者:

    卢福伟,E-mail: lufuwei@yangtzeu.edu.cn

  • 中图分类号: TE254.3

Friction reduction of oleamide lubricants on iron surface

  • 摘要: 采用分子模拟方法研究了油酸酰胺、油酸二乙烯三胺、油酸三乙烯四胺、油酸四乙烯五胺4种表面活性剂在铁表面的吸附性能和润滑性能。吸附模拟结果表明,吸附能随氮原子含量提高而增大,其中油酸四乙烯五胺单分子在铁表面的吸附能为−1512.4679 KJ·mol−1,高于其他3种酰胺。剪切动力学模拟结果表明,4种表面活性剂的氮原子集中分布在铁表面,其中含氮较高的油酸四乙烯五胺在剪切面优先吸附,氮原子密度为固定面的1.6倍左右。四球摩擦实验结果表明,氮原子含量提高,酰胺摩擦系数降低,磨斑半径减小,其中油酸四乙烯五胺的摩擦系数为0.004 36,是油酸酰胺的1/2,磨斑半径为241.7 μm,小于其他3种酰胺。分子模拟和实验结果均表明,随着分子中氮原子含量的增加,油酸酰胺型表面活性剂在铁表面具有更好的润滑效果。

     

  • 图  1  油酸酰胺型表面活性剂模型

    图  2  Fe(0 0 1)面模型

    图  3  油酸酰胺表面活性剂剪切动力学模型

    图  4  油酸酰胺型表面活性剂在铁表面吸附构型

    图  5  油酸酰胺表面活性剂剪切前后N原子浓度分布

    图  6  160 ℃下油酸酰胺表面活性剂摩擦实验的摩擦系数

    图  7  160 ℃下油酸酰胺表面活性剂摩擦测试磨斑

    表  1  油酸酰胺表面活性剂在Fe(0 0 1)表面单分子吸附能

    分子 能量/(KJ·mol−1)
    吸附能 刚性吸附能 形变能
    OM1 −1022.4868 −572.3641 −450.1227
    OM2 −1283.0353 −738.0526 −544.9827
    OM3 −1429.7987 −809.4145 −620.3843
    OM4 −1512.4679 −883.9026 −628.5652
    下载: 导出CSV
  • [1] 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用[J]. 断块油气田,2021,28(6):761-764.

    SONG Hai, LONG Wu, DENG Xiongwei. Development and application of high temperature resistant and environmental protection lubricant for shale gas water-based drilling fluid[J]. Fault-Block Oil & Gas Field, 2021, 28(6):761-764.
    [2] 张永耀,侯树岭. 页岩油定向井水平井摩阻分析探讨[J]. 石化技术,2020,27(11):140-141.

    ZHANG Yongyao, HOU Shuling. Analysis and discussion on frictional resistance of horizontal well in Shale oil directional well[J]. Petrochemical Industry Technology, 2020, 27(11):140-141.
    [3] 武金平. 分析定向井水平井摩阻控制与优化处理[J]. 石化技术,2020,27(1):350-352.

    WU Jinping. Analysis of horizontal well friction control and optimization of directional wells[J]. Petrochemical Industry Technology, 2020, 27(1):350-352.
    [4] 魏佳怡,李月红,于文婧,等. 环保型水基钻井液润滑剂的研究进展[J]. 化工技术与开发,2021,50(6):36-40.

    WEI Jiayi, LI Yuehong, YU Wenjing, et al. Research progress of environmental friendly water based drilling fluid lubricant[J]. Technology & Development of Chemical Industry, 2021, 50(6):36-40.
    [5] 金军斌. 钻井液用润滑剂研究进展[J]. 应用化工,2017,46(4):770-774.

    JIN Junbin. Research advances of the lubricants for drilling fluid[J]. Applied Chemical Industry, 2017, 46(4):770-774.
    [6] 李小瑞,张宇,景晓琴,等. 一种高性能环保型钻井液润滑剂的研究与应用[J]. 钻井液与完井液,2018,35(4):46-50. doi: 10.3969/j.issn.1001-5620.2018.04.008

    LI Xiaorui, ZHANG Yu, JING Xiaoqin, et al. Evaluation and application of the high performance environmentally friendly drilling fluid lubricant[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):46-50. doi: 10.3969/j.issn.1001-5620.2018.04.008
    [7] 郝宗香,王泽霖,何琳,等. 低荧光水基润滑剂RY-838 的研制与应用[J]. 钻井液与完井液,2012,29(4):24-26.

    HAO Zongxiang, WANG Zelin, HE Lin, et al. Research and application on low fluorescence water-base lubricant RY-838[J]. Drilling Fluid & Completion Fluid, 2012, 29(4):24-26.
    [8] 逯贵广. 环保型钻井用高效润滑剂NH-HPL的制备与性能评价[J]. 西安石油大学学报(自然科学版),2017,32(5):85-89.

    LU Guiguang. Preparation and performance evaluation of environmentally friendly efficient lubricant NH-HPL for drilling[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(5):85-89.
    [9] 赵虎. 钻井液润滑性评价方法对比研究[J]. 石油工业技术监督,2021,37(4):24-27.

    ZHAO Hu. Comparison of evaluation methods for lubricity of drilling fluid[J]. Technology Supervision in Petroleum Industry, 2021, 37(4):24-27.
    [10] 李斌,蒋官澄,王金锡,等. 水基钻井液用润滑剂SDL-1的研制与评价[J]. 钻井液与完井液,2019,36(2):170-175.

    LI Bin, JIANG Guancheng, WANG Jinxi, et al. Development and evaluation of a water base drilling fluid lubricant SDL-1[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):170-175.
    [11] 李义雅,龙军,段庆华,等. 分子动力学模拟研究矿物基础油润滑性能[J]. 石油学报(石油加工),2017,33(4):619-625.

    LI Yiya, LONG Jun, DUAN Qinghua, et al. Molecular dynamics simulation on the lubrication property of mineral base oil[J]. Acta Petrolei Sinica(Petroleum Processing), 2017, 33(4):619-625.
    [12] 罗辉,范维玉,李阳,等. 生物柴油组分在铁表面吸附的分子动力学模拟[J]. 石油学报(石油加工),2013,29(3):416-421.

    LUO Hui, FAN Weiyu, LI Yang, et al. Molecular dynamics simulation on the adsorption behaviors of biodiesel components on iron surface[J]. Acta Petrolei Sinica(Petroleum Processing), 2013, 29(3):416-421.
    [13] 孙晓岩,宋泓阳,项曙光. ZSM-5分子筛上氯乙酸和二氯乙酸吸附行为的蒙特卡罗研究[J]. 计算机与应用化学,2017,34(2):109-113. doi: 10.16866/j.com.app.chem201702003

    SUN Xiaoyan, SONG Hongyang, XIANG Shuguang. Adsorption of chloroacetic acid and dichloroacetic acid in ZSM-5 zeolite by grand canonical monte carlo simulation[J]. Computers and Applied Chemistry, 2017, 34(2):109-113. doi: 10.16866/j.com.app.chem201702003
    [14] 郭剑梅,周健,卢福伟,等. 润滑剂基础油在钻具表面吸附模拟[J]. 钻井液与完井液,2018,35(6):27-30. doi: 10.3969/j.issn.1001-5620.2018.06.005

    GUO Jianmei, ZHOU Jian, LU Fuwei, et al. Simulation of adsorption of lubricant base oil on the surface of drilling tools[J]. Drilling Fluid & Completion Fluid, 2018, 35(6):27-30. doi: 10.3969/j.issn.1001-5620.2018.06.005
    [15] 张冬,程延海,冯世哲,等. 溶氧水在Fe(001)表面吸附的第一性原理研究[J]. 河北科技大学学报,2018,39(1):24-34.

    ZHANG Dong, CHENG Yanhai, FENG Shizhe, et al. First principles study of dissolved oxygen water adsorption on Fe(001) surfaces[J]. Journal of Hebei University of Science and Technology, 2018, 39(1):24-34.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  238
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-06-09
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回