留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于季戊四醇的超支化降滤失剂的合成及性能评价

宋永涛 周丰 余维初 张颖 舒文明

宋永涛,周丰,余维初,等. 基于季戊四醇的超支化降滤失剂的合成及性能评价[J]. 钻井液与完井液,2022,39(5):587-595 doi: 10.12358/j.issn.1001-5620.2022.05.009
引用本文: 宋永涛,周丰,余维初,等. 基于季戊四醇的超支化降滤失剂的合成及性能评价[J]. 钻井液与完井液,2022,39(5):587-595 doi: 10.12358/j.issn.1001-5620.2022.05.009
SONG Yongtao, ZHOU Feng, YU Weichu, et al.The synthesis and evaluation of a pentaerythritol-based hyperbranched polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid,2022, 39(5):587-595 doi: 10.12358/j.issn.1001-5620.2022.05.009
Citation: SONG Yongtao, ZHOU Feng, YU Weichu, et al.The synthesis and evaluation of a pentaerythritol-based hyperbranched polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid,2022, 39(5):587-595 doi: 10.12358/j.issn.1001-5620.2022.05.009

基于季戊四醇的超支化降滤失剂的合成及性能评价

doi: 10.12358/j.issn.1001-5620.2022.05.009
基金项目: 国家科技重大专项“大型油气田及煤层气开发”(2017ZX05049003-007)
详细信息
    作者简介:

    宋永涛,在读硕士研究生,研究方向为油气田应用化学。E-mail:1749938574@qq.com

    通讯作者:

    余维初,长江大学二级教授,1965年生,主要从事石油与天然气油气田应用化学研究工作。E-mail: yuweichu@126.com

  • 中图分类号: TE254.4

The Synthesis and Evaluation of a Pentaerythritol-Based Hyperbranched Polymer Filter Loss Reducer

  • 摘要: 针对现有的降滤失剂在使用过程中存在对钻井液流变性影响大、抗温和抗盐能力不足的问题,以季戊四醇为核心结构的多烯基单体四烯丙基醚(PPTE),与2-丙烯酰胺-2-甲基丙磺酸(AMPS)、N-乙烯基吡咯烷酮(NVP)、丙烯酰胺(AM)为原料,通过自由基聚合反应合成一种基于季戊四醇的超支化降滤失剂PPAAN-1。在正交实验的基础上,进一步考虑四烯丙基醚加量对降滤失剂的表观黏度的影响,最终确认了降滤失剂PPAAN-1的最佳合成条件:PPTE加量为17%、AMPS∶AM∶NVP=2∶6∶1、反应温度为55 ℃、引发剂(AIBN)为0.2%。在室内评价其降滤失效果、流变性能、热稳定性能以及其对滤饼质量的影响。实验结果表明,与国外降滤失剂Driscal D和DrisTemp相比,降滤失剂PPAAN-1对钻井液流变性能影响小,同时拥有良好的热稳定性能以及降滤失效果,其热降解温度高达302.29 ℃,在30%氯化钠盐水浆(1%PPAAN-1)中的API滤失量(220 ℃老化后)为9.8 mL、高温高压滤失量(150 ℃)为18.5 mL;在高温高矿化度的条件下降滤失剂PPAAN-1可形成网状结构,并吸附在黏土表面,提高钻井液中黏土颗粒粒径的分布范围,从而形成致密的泥饼,以达到降滤失的目的。

     

  • 图  1  PPTE用量对添加PPAAN-1钻井液性能的影响

    图  2  1%PPAAN-1溶液的扫描电镜图

    图  3  PPTE和PPAAN-1的FTIR谱图

    图  4  PPAAN-1的热重曲线

    图  5  在淡水浆中加入1%不同降滤失剂的流变性

    图  6  不同温度下、不同浓度PPAAN-1淡水浆的滤失量

    图  7  不同NaCl浓度下1%PPAAN-1盐水基浆的滤失量

    图  8  PPAAN-1在黏土颗粒上面的吸附等温线

    图  9  不同浓度PPAAN-1的盐水浆(30%NaCl)在220 ℃老化前后的粒度分布    

    图  10  泥饼压缩性对比

    图  11  加入PPAAN-1前后的泥饼微观形貌

    表  1  正交实验因素水平

    水平 因素
    A B C D
    PPTE/% AMPS∶AM∶NVP T反应/℃ AIBN/%
    1 5 8∶6∶1 55 0.2
    2 15 2∶6∶1 60 0.3
    3 25 2∶6∶4 65 0.4
    下载: 导出CSV

    表  2  PPAAN-1的合成条件正交实验设计及结果

    序号 A B C D FLAPI/mL AV/mPa·s
    1 1 1 1 1 16.0 19.5
    2 1 2 2 2 14.8 24.5
    3 1 3 3 3 17.2 28.0
    4 2 1 2 3 15.5 15.5
    5 2 2 3 1 10.8 12.0
    6 2 3 1 2 12.4 10.0
    7 3 1 3 2 11.4 32.0
    8 3 2 1 3 8.4 27.5
    9 3 3 2 1 9.8 34.5
    下载: 导出CSV

    表  3  三因素对钻井液的表现黏度和降滤失能力的影响

    FLAPI/mL AV/mPa·s
    A B C D A B C D
    k1 16.00 14.3 12.27 12.20 24.00 22.33 19.00 22.00
    k2 12.90 11.33 13.37 12.87 12.50 21.33 24.83 22.17
    k3 9.96 13.13 13.13 13.70 31.33 24.17 24.00 23.67
    R 7.13 2.97 0.87 1.50 18.83 1.83 5.83 1.67
    下载: 导出CSV

    表  4  在淡水浆中加入不同浓度PPAAN-1的流变性

    PPAAN-1/
    %
    220 ℃老化前 220 ℃老化后
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    0 4.0 3 1.0 2.5 2 0.5
    0.5 7.0 5 2.0 2.5 1 1.5
    1.0 11.5 10 1.5 7.0 5 2.0
    1.5 16.0 13 3.0 14.5 11 3.5
    2.0 23.5 19 4.5 17.5 15 2.5
    下载: 导出CSV

    表  5  NaCl用量对1%PPAAN-1盐水浆流变性能的影响

    NaCl/
    %
    220 ℃老化前 220 ℃老化后
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    0 11.5 10 1.5 7.0 5 2.0
    10 9.5 8 1.5 7.5 6 1.5
    20 8.5 6 2.5 7.0 5 2.0
    30 7.0 6 1.0 5.5 5 0.5
    下载: 导出CSV

    表  6  CaCl2用量对1%PPAAN-1盐水浆性能的影响

    CaCl2/
    %
    220 ℃老化前 220 ℃老化后
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    0 11.5 10 1.5 4.6 7.0 5 2.0 7.2
    0.5 8.0 7 1.0 8.4 6.5 5 1.0 13.3
    1.0 7.0 5 2.0 9.8 4.5 3 1.5 16.5
    下载: 导出CSV
  • [1] LIU J, GUO B, LI G, et al. Synthesis and performance of environmental friendly starch based filtrate reducers forwater based drilling fluids[J]. Fresenius Environmental Bulletin, 2019, 28(7):5618-5623.
    [2] 刘均一,郭保雨,王勇,等. 环保型水基钻井液在胜利油田的研究与应用[J]. 钻井液与完井液,2020,37(1):64-70.

    LIU Junyi, GUO Baoyu, WANG Yong, et al. Research and application of environmentally friendly water-based drilling fluids in Shengli oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):64-70.
    [3] 陈馥,罗先波,熊俊杰. 一种改性淀粉钻井液降滤失剂的合成与性能评价[J]. 应用化工,2011,40(5):850-852. doi: 10.3969/j.issn.1671-3206.2011.05.031

    CHEN Fu, LUO Xianbo, XIONG Junjie. Synthesis and performance evaluation of a modified starch drilling fluid filter loss reduction agent[J]. Applied Chemistry, 2011, 40(5):850-852. doi: 10.3969/j.issn.1671-3206.2011.05.031
    [4] 马喜平,李俊辰,周有祯,等. 两性离子聚合物降滤失剂的合成及评价[J]. 石油化工,2020,49(1):75-82. doi: 10.3969/j.issn.1000-8144.2020.01.012

    MA Xiping, LI Junchen, ZHOU Youzhen, et al. Synthesis and evaluation of amphiphilic polymeric filter loss reducing agents[J]. Petrochemicals, 2020, 49(1):75-82. doi: 10.3969/j.issn.1000-8144.2020.01.012
    [5] CAO J, MENG L, YANG Y, et al. Novel acrylamide/2-acrylamide-2-methylpropanesulfonic acid/4-vinylpyridine terpolymer as an anti-calcium contamination fluid-loss additive for water-based drilling fluids[J]. Energy & Fuels, 2017, 31(11):11963-11970.
    [6] ZHENG W, WU X, HUANG Y. Impact of polymer addition, electrolyte, clay and antioxidant on rheological properties of polymer fluid at high temperature and high pressure[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(2):663-671.
    [7] 周国伟, 邱正松, 钟汉毅, 等. 新型抗高温降滤失剂GDF-1的研制及性能评价[J/OL]. 应用化工: 1-8[2022-01-07].

    ZHOU Guowei, QIU Zhengsong, ZHONG Hanyi, et al. Development and performance evaluation of a new high temperature resistant filtrate reducer gdf-1 [J/OL] Applied chemical industry: 1-8 [2022-01-07].
    [8] OSEH J O, MOHD N, ISMAIL I, et al. A novel approach to enhance rheological and filtration properties of water-based mud using polypropylene-silica nanocomposite[J].Journal of Petroleum Science and Engineering, 2019, 181:106264. doi: 10.1016/j.petrol.2019.106264
    [9] LIU L, PU X, RONG K, et al. Comb-shaped copolymer as filtrate loss reducer for water‐based drilling fluid[J]. Journal of Applied Polymer Science, 2018, 135(11):45989.
    [10] 张小平,黄艳琴,任厚基,等. 超支化聚合物研究最新进展[J]. 科学通报,2011,56(21):13.

    ZHANG Xiaoping, HUANG Yanqin, REN Houji, et al. Recent advances in the study of hyperbranched polymers[J]. Science Bulletin, 2011, 56(21):13.
    [11] 詹宁宁,张丽锋,赵新星,等. 超支化聚合物的合成及应用[J]. 材料导报,2021,35(S2):616-626.

    ZHAN Ningning, ZHANG Lifeng, ZHAN Xinxing, et al. Synthesis and application of hyperbranched polymers[J]. Materials Direct, 2021, 35(S2):616-626.
    [12] XING A, SUN Q, MENG Y, et al. A hydroxyl-containing hyperbranched polymer as a multi-purpose modifier for a dental epoxy[J]. Reactive and Functional Polymers, 2020, 149:104505. doi: 10.1016/j.reactfunctpolym.2020.104505
    [13] 唐新德,张其震,侯昭升,等. 新型树状大分子核醚-四硅烷的合成[J]. 有机化学,2004,24(1):103-105. doi: 10.3321/j.issn:0253-2786.2004.01.021

    TANG Xinde, ZHANG Qizhen, HOU Zhaosheng, et al. Synthesis of novel dendritic macromolecular nucleophile-tetrasilanes[J]. Organic Chemistry, 2004, 24(1):103-105. doi: 10.3321/j.issn:0253-2786.2004.01.021
    [14] 许娟,彭修军,崔茂荣,等. 降滤失剂PAX的吸附特性[J]. 钻井液与完井液,2004(4):15-17, 72. doi: 10.3969/j.issn.1001-5620.2004.04.004

    XU Juan, PENG Xiujun, CUI Maorong, et al. Adsorption properties of the filter loss reducing agent PAX[J]. Drilling Fluid & Completion Fluid, 2004(4):15-17, 72. doi: 10.3969/j.issn.1001-5620.2004.04.004
    [15] 张健, 张黎明, 李卓美, 等. 疏水化水溶性两性纤维素接枝共聚物与黏土的相互作用[C]// 全国高分子学术报告会. 中国化学会, 2001.

    ZHANG Jian, ZHANG Liming, LI Zhuomei, et al. Interaction of hydrophobic water-soluble amphiphilic cellulose graft copolymers with clay [C]// National Polymer Symposium. Chinese Chemical Society, 2001.
    [16] 胡子乔,刘四海,刘金华,等. 水溶性聚合物热稳定性研究进展[J]. 化学通报,2016,79(8):714-718,722. doi: 10.14159/j.cnki.0441-3776.2016.08.004

    HU Ziqiao, LIU Sihai, LIU Jinhua, et al. Advances in the study of thermal stability of water-soluble polymers[J]. Chemical Bulletin, 2016, 79(8):714-718,722. doi: 10.14159/j.cnki.0441-3776.2016.08.004
    [17] 刘亦凡,鲁盈,李炎军,等. 黏土-水悬浮体系热滚老化后的分散性[J]. 科学技术与工程,2019,19(35):148-152. doi: 10.3969/j.issn.1671-1815.2019.35.021

    LIU Yifan, LU Ying, LI Yanjun, et al. Dispersion of clay-water suspension system after hot roll aging[J]. Science Technology and Engineering, 2019, 19(35):148-152. doi: 10.3969/j.issn.1671-1815.2019.35.021
    [18] RAZAVI O, VAJARGAH A K, VAN OORT E, et al. Optimum particle size distribution design for lost circulation control and wellbore strengthening[J]. Journal of Natural Gas Science and Engineering, 2016, 35:836-850.
    [19] 张春光,孙明波. 降滤失剂作用机理研究——对不同类型降滤失剂的分析[J]. 钻井液与完井液,1996,13(3):7.

    ZHANG Chunguang, SUN Mingbo. Study on the mechanism of action of filter loss reducing agents-analysis of different types of filter loss reducing agents[J]. Drilling Fluid & Completion Fluid, 1996, 13(3):7.
    [20] CHEN Y, WU R, ZHOU J, et al. A novel hyper-cross-linked polymer for high-efficient fluid-loss control in oil-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626:127004. doi: 10.1016/j.colsurfa.2021.127004
    [21] ARTHUR K G, PEDEN J M. The evaluation of drilling fluid filter cake properties and their influence on fluid loss[C]//International Meeting on Petroleum Engineering. OnePetro, 1988.
    [22] 姚如钢,张振华,彭春耀,等. 钻井液滤失造壁性能评价方法研究现状[J]. 钻井液与完井液,2016,33(6):1-9.

    YAO rugang, ZHANG Zhenhua, PENG Chunyao, et al. Research status of evaluation methods of drilling fluid filtration and wall building performance[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):1-9.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  232
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-04-27
  • 录用日期:  2022-05-21
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回