留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石蜡微乳液的研制及其在水基钻井液中的应用

宋瀚轩 叶艳 周志世 张焊钰 张謦文 周福建 郭继香

宋瀚轩,叶艳,周志世,等. 石蜡微乳液的研制及其在水基钻井液中的应用[J]. 钻井液与完井液,2022,39(5):550-557 doi: 10.12358/j.issn.1001-5620.2022.05.004
引用本文: 宋瀚轩,叶艳,周志世,等. 石蜡微乳液的研制及其在水基钻井液中的应用[J]. 钻井液与完井液,2022,39(5):550-557 doi: 10.12358/j.issn.1001-5620.2022.05.004
SONG Hanxuan, YE Yan, ZHOU Zhishi, et al.Development of paraffin microemulsion and its application in water-based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(5):550-557 doi: 10.12358/j.issn.1001-5620.2022.05.004
Citation: SONG Hanxuan, YE Yan, ZHOU Zhishi, et al.Development of paraffin microemulsion and its application in water-based drilling fluids[J]. Drilling Fluid & Completion Fluid,2022, 39(5):550-557 doi: 10.12358/j.issn.1001-5620.2022.05.004

石蜡微乳液的研制及其在水基钻井液中的应用

doi: 10.12358/j.issn.1001-5620.2022.05.004
基金项目: 国家自然科学基金“多孔介质中纳米颗粒与发泡剂协同构建Pickering泡沫机制及其运移规律”(ZX20200280);塔里木油田项目“英沙、玉龙区块地层特性与钻井液技术对策研究”(201019121044)
详细信息
    作者简介:

    宋瀚轩,1997年生,博士,专业为新能源油田化学方向。E-mail:1185041519@qq.com

  • 中图分类号: TE254.4

Development of Paraffin Microemulsion and Its Application in Water-Based Drilling Fluids

  • 摘要: 对塔西南超深井钻井过程中出现的微纳米裂缝与孔隙渗漏的问题进行分析,发现现有钾基聚磺钻井液中的封堵剂不能有效封堵微纳米裂缝与孔隙。为提高封堵粒径级配,在室内制备一种石蜡微乳液,通过粒径比较法得出了最佳制备方案。方案表明制备的最佳比例为“S+A”∶石蜡=9∶1,最佳搅拌速度为1400 r/min,最佳温度为120 ℃。制备得到的石蜡微乳液D50粒径在2.9 μm左右,单分散颗粒尺寸在200~300 nm左右,表面张力在45.0~47.5 mN/m范围内,稳定时间长达30 d。采用石蜡微乳液对塔西南区块钾聚磺水基钻井液体系进行优化,从优化结果可以看出,石蜡微乳液的配伍性好;优化后钻井液体系表观黏度降低3.5 mPa·s;钻井液的滤失量减小3.5 mL;泥饼厚度减小1 mm,增强了钻井液的滤失造壁性能。采用压力传导法对石蜡微乳液的封堵性能进行评价,结果表明石蜡微乳液可以提高封堵承压能力,石蜡微乳液优化钻井液对克孜洛依组致密砂岩的封堵率为58.4%,具有较好的微纳米裂缝孔隙封堵能力。

     

  • 图  1  不同比例下石蜡微乳液粒径分布

    图  2  不同转速下石蜡微乳液粒径分布

    图  3  不同温度下石蜡微乳液粒径分布

    图  4  石蜡微乳液红外光谱图

    图  5  不同浓度下石蜡微乳液表面张力

    图  6  石蜡微乳液TEM图

    图  7  优化钻井液的高温高压滤失量(150 ℃、3.5 MPa )

    图  8  添加封堵材料后钻井液滤饼厚度

    图  9  添加封堵材料后钻井液的滤饼微观照片

    图  10  钾基聚磺钻井液优化后前后的粒径变化

    图  11  压力传导仪器装置图

    图  12  封堵前后岩心压力传导曲线

    图  13  优化前后钻井液滤液对克孜洛依组岩样的封堵率计算曲线

    图  14  现场钻井液泥饼SEM照片

    图  15  现场钻井液粒粒径分析

    表  1  在钾聚磺钻井液体系中加入不同封堵剂的黏切性能

    防塌
    封堵剂
    ρ/
    g·cm−3
    Gel/
    Pa/Pa
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    01.874.0/12.047.03512.0
    1%聚合醇PEG-4001.825.0/12.551.03912.0
    1%纳米SiO21.870.5/10.045.62817.6
    1%石蜡微乳液1..861.5/10.043.5394.5
      注:基浆配方:3%膨润土(胶液)+0.4%NaOH+ 0.5%PAC-LV+0.1%AP-220+4%SMP-3(胶液)+4% SPNH(胶液)+25%DYFT-2+2%Ft-1+3%KC1+重晶石
    下载: 导出CSV

    表  2  TM-1井使用钻井液优化前后的性能

    井深井号钻井液ρ/
    g·cm-3
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLHTHP/
    mL
    泥饼HTHP/
    mm
    4993~5228S-1
    (未优化)
    KCl-聚磺1.4~1.5544311.0(1.0~2.0)/(4.0~5.0)8~142.3
    5078~5329TM-1
    (优化后)
    KCl-聚磺1.4~1.546~5225~355.0~7.5(1.0~1.5)/(4.0~5.5)6~7.21.5
      注:FLHTHP在120 ℃测定
    下载: 导出CSV
  • [1] 刘金,王剑,张宝真,等. 吉木萨尔凹陷芦草沟组页岩储层微纳米孔隙成因及含油特征[J]. 新疆地质,2021,39(1):94-98.

    LIU Jin, WANG Jian, ZHANG Baozhen, et al. Genesis and oil-bearing characteristics of micro-nano pores in shale reservoir of the Lucaogou formation in Jimusar depression[J]. Xinjiang Geology, 2021, 39(1):94-98.
    [2] 刘喜亮,由福昌,吴素珍,等. 页岩井壁失稳机理分析及钻井液对策研究[J]. 当代化工,2020,49(1):129-133. doi: 10.3969/j.issn.1671-0460.2020.01.032

    LIU Xiliang, YOU Fuchang, WU Suzhen, et al. Analysis of shale borehole instability mechanism and research on drilling fluid countermeasures[J]. Contemporary Chemical Industry, 2020, 49(1):129-133. doi: 10.3969/j.issn.1671-0460.2020.01.032
    [3] 薛湘湘. 润滑防塌的微/纳米封堵剂的研制及其性能研究[D]. 延安大学, 2016.

    XUE Xiangxiang. Development of lubricating and anti-slump micro/nano plugging agent and its performance research [D]. Yan'an University, 2016.
    [4] 夏鹏,蔡记华,范志军,等. 纳米二氧化硅对盐水钻井液性能的影响[J]. 钻井液与完井液,2015,32(3):9-12,103. doi: 10.3969/j.issn.1001-5620.2015.03.003

    XIA Peng, CAI Jihua, FAN Zhijun, et al. Effect of nano-silica on the properties of brine drilling fluids[J]. Drilling Fluid & Completion Fluid, 2015, 32(3):9-12,103. doi: 10.3969/j.issn.1001-5620.2015.03.003
    [5] SENSOY T, CHENEVERT M E, SHARMA M M. Minimizing water invasion in shales using nanoparticles[C]//SPE annual technical conference and exhibition. OnePetro, 2009.
    [6] ARAMENDIZ J, IMQAM A, FAKHER S M. Design and evaluation of a water-based drilling fluid formulation using SiO and graphene oxide nanoparticles for unconventional shales[C]//International petroleum technology conference. OnePetro, 2019.
    [7] 盛勇,叶艳,朱金智,等. 纳米内核乳液用于塔西南地区钻井液的优化[J]. 钻井液与完井液,2021,38(2):170-175. doi: 10.3969/j.issn.1001-5620.2021.02.007

    SHENG Yong, YE Yan, ZHU Jinzhi, et al. Optimization of drilling fluids with nano-core emulsions in Southwest Tarim basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):170-175. doi: 10.3969/j.issn.1001-5620.2021.02.007
    [8] ELSHAMY S, KHADIZATUL K, UEMURA K, et al. Chitosan-based film incorporated with essential oil nanoemulsion foreseeing enhanced antimicrobial effect[J]. Journal of Food Science and Technology, 2021, 58(9):3314-3327. doi: 10.1007/s13197-020-04888-3
    [9] KREUTZ T, CARNEIRO S B, SOARES K D, et al. Aniba canelilla (Kunth) Mez essential oil-loaded nanoemulsion: Improved stability of the main constituents and in vitro antichemotactic activity[J]. Industrial Crops and Products, 2021, 171:113949. doi: 10.1016/j.indcrop.2021.113949
    [10] 代礼杨,李洪俊,苏秀纯,等. 石蜡微乳液的研究及应用[J]. 钻井液与完井液,2012,29(2):5-7. doi: 10.3969/j.issn.1001-5620.2012.02.002

    DAI Liyang, LI Hongjun, SU Xiuchun, et al. Research and application of paraffin microemulsion[J]. Drilling Fluid & Completion Fluid, 2012, 29(2):5-7. doi: 10.3969/j.issn.1001-5620.2012.02.002
    [11] 李红梅,李伟,于小龙,等. 纳米乳化石蜡钻井液在延长低渗油田的应用[J]. 石油化工应用,2012,31(11):37-40.

    LI Hongmei, LI Wei, YU Xiaolong, et al. Application of nano-emulsion paraffin drilling fluid in Yanchang low-permeability oilfield[J]. Petrochemical Application, 2012, 31(11):37-40.
    [12] 陈军,王学军,高远鹏,等. 石蜡微乳液钻井液技术在水平井中的应用[J]. 钻井液与完井液,2010,27(4):87-89. doi: 10.3969/j.issn.1001-5620.2010.04.029

    CHEN Jun, WANG Xuejun, GAO Yuanpeng, et al. Application of paraffin microemulsion drilling fluid technology in horizontal wells[J]. Drilling Fluid & Completion Fluid, 2010, 27(4):87-89. doi: 10.3969/j.issn.1001-5620.2010.04.029
    [13] 晏军,于长海,梁冲,等. 纳米石蜡乳液封堵材料的合成与性能评价[J]. 钻井液与完井液,2018,35(2):73-77. doi: 10.3969/j.issn.1001-5620.2018.02.012

    YAN Jun, YU Changhai, LIANG Chong, et al. Synthesis and Evaluation of a Nanophase Wax Emulsion Plugging Material[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):73-77. doi: 10.3969/j.issn.1001-5620.2018.02.012
    [14] 侯长军,刘勇,霍丹群,等. 具有良好稳定性的石蜡乳液的制备及改进[J]. 应用化工,2010(2):175-178,181. doi: 10.16581/j.cnki.issn1671-3206.2010.02.023

    HOU Changjun, LIU Yong, HUO Danqun, et al. Synthesis and performance evaluation of paraffin microemulsion plugging materials[J]. Applied Chemical Industry, 2010(2):175-178,181. doi: 10.16581/j.cnki.issn1671-3206.2010.02.023
    [15] ALJABRI N M, SHI N, CAVAZOS A. Nanoemulsion: an emerging technology for oilfield applications between limitations and potentials[J]. Journal of Petroleum Science and Engineering, 2022, 208:109306. doi: 10.1016/j.petrol.2021.109306
    [16] 张路锋,周福建,张士诚,等. 塔里木克深致密砂岩气藏基质钻井液伤害评价[J]. 钻井液与完井液,2019,36(1):126-132. doi: 10.3969/j.issn.1001-5620.2019.01.024

    ZHANG Lufeng, ZHOU Fujian, ZHANG Shicheng, et al. Damage evaluation of matrix drilling fluids in the deep tight sandstone gas reservoir in Tarim[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):126-132. doi: 10.3969/j.issn.1001-5620.2019.01.024
    [17] CAI J, CHENEVERT M E, SHARMA M M, et al. Decreasing water invasion into Atoka shale using nonmodified silica nanoparticles[J]. SPE Drilling & Completion, 2012, 27(1):103-112.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  656
  • HTML全文浏览量:  242
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-03
  • 修回日期:  2022-04-23
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回