留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深水浅层钻井液水合物抑制性能优化

任冠龙 孟文波 何玉发 黄亮 王金堂

任冠龙,孟文波,何玉发,等. 深水浅层钻井液水合物抑制性能优化[J]. 钻井液与完井液,2022,39(5):529-537 doi: 10.12358/j.issn.1001-5620.2022.05.001
引用本文: 任冠龙,孟文波,何玉发,等. 深水浅层钻井液水合物抑制性能优化[J]. 钻井液与完井液,2022,39(5):529-537 doi: 10.12358/j.issn.1001-5620.2022.05.001
REN Guanlong, MENG Wenbo, HE Yufa, et al.Optimization of hydrate inhibition performance of deep water shallow drilling fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(5):529-537 doi: 10.12358/j.issn.1001-5620.2022.05.001
Citation: REN Guanlong, MENG Wenbo, HE Yufa, et al.Optimization of hydrate inhibition performance of deep water shallow drilling fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(5):529-537 doi: 10.12358/j.issn.1001-5620.2022.05.001

深水浅层钻井液水合物抑制性能优化

doi: 10.12358/j.issn.1001-5620.2022.05.001
基金项目: 国家重点研发计划“深海和极地关键技术与装备”重点专项“海洋天然气水合物、浅层气、深部气目标评价及合采技术”(2021YFC2800900)
详细信息
    作者简介:

    任冠龙,中国石油大学(华东)油气井工程专业毕业,主要从事海洋石油钻完井工艺方面的研究工作。E-mail:rengl4@cnooc.com.cn

  • 中图分类号: TE254.2

Optimization of Hydrate Inhibition Performance of Deep Water Shallow Drilling Fluid

  • 摘要: 深水浅层地质条件复杂,土质疏松、作业压力窗口窄、海底泥线温度低、井筒内易生成水合物,钻井液面临着井壁稳定、低温流变性调控难度大以及环境污染等问题,钻井安全作业风险高。为此,以南海某深水井浅层钻井为研究对象,总结分析了深水浅层钻井液应用现状,建立了深水浅层钻进ECD计算模型和井筒温度场计算模型,分析了深水浅层钻井期间的井筒温度场分布规律和水合物生成风险,结合数值模拟和室内实验,进行了浅层钻井液体系水合物抑制性能优化。研究结果表明,建立的深水浅层钻进ECD计算模型和井筒温度场计算模型,与实测数据对比模型计算平均误差小于8%;计算得出深水浅层钻进期间井筒水合物生成区域范围随着钻井深度的增加逐渐减小,但钻进准备期间及钻进初期,井筒内仍存在水合物生成风险;常规半防钻井液体系优化为HEM+14%NaCl+6%KCl,可满足正常钻进期间作业需求。结论认为:通过深水浅层钻井液体系优化,可以减少钻井液体系中水合物抑制剂的加入,简化钻井液配方,降低钻井成本,提高作业效率,为深水油气钻探钻井液设计提供指导。

     

  • 图  1  不同浓度盐类抑制剂对天然气水合物相态曲线的影响

    图  2  LX-1井ECD模拟计算与校正

    图  3  LX-1井不同钻进深度温度场模拟计算及校正

    图  4  LX-1井不同钻进深度的水合物生成风险图

    图  5  钻井液体系对天然气水合物的抑制能力

    图  6  钻井液体系水合物抑制性能优化

    图  7  HEM钻井液体系的水合物生成抑制性实验结果

    图  8  HEM钻井液体系各组分对水合物生成抑制性实验结果

    图  9  HEM钻井液体系体系抑制水合物作用机理

    表  1  LX-1井三开钻进期间水合物生成区域预测

    钻进深度/m0
    (钻进准备)
    256025752600
    水合物生成区域/m540~1795454~1495549~10980
    下载: 导出CSV

    表  2  HEM钻井液体系的水合物生成抑制性实验结果

    t/minT夹套/℃T液相/℃T气相/℃釜内压力/MPa反馈力矩/(N·m)气体物质的量/mol
    3017.4217.9717.9214.0316.03.380 87
    6015.9916.9216.9213.9415.93.374 59
    9014.5715.6315.6813.8215.73.364 39
    12013.1414.2514.4013.6915.93.352 00
    18010.2811.5111.7513.4515.83.333 89
    3601.756.578.7410.3519.32.522 95
    72016.0114.8516.1711.9202.842 77
    102015.9815.8116.4713.3103.211 41
    120015.9815.9116.5413.6403.299 77
    135015.9315.9016.8613.8003.337 58
    150015.9615.9916.9113.8703.355 72
    下载: 导出CSV
  • [1] 王卫东. 南海深水钻井液的应用探讨[J]. 化工管理,2021(29):192-193. doi: 10.19900/j.cnki.ISSN1008-4800.2021.29.092

    WANG Weidong. Application of deep-water drilling fluid in the South China Sea[J]. Chemical Enterprise Management, 2021(29):192-193. doi: 10.19900/j.cnki.ISSN1008-4800.2021.29.092
    [2] 林云涛. 海洋深水钻井完井液关键技术研究[J]. 中国石油和化工标准与质量,2021,41(18):197-198.

    LIN Yuntao. Research on key technologies of offshore deepwater drilling and completion fluid[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(18):197-198.
    [3] 白小东,黄进军,侯勤立. 深水钻井液中天然气水合物的成因分析及其防治措施[J]. 精细石油化工进展,2004(4):52-54,58. doi: 10.3969/j.issn.1009-8348.2004.04.015

    BAI Xiaodong, HUANG Jinjun, HOU Qinli. Contributing factors and preventing measures of hydrate in deep water drilling mud[J]. Advances in Fine Petrochemicals, 2004(4):52-54,58. doi: 10.3969/j.issn.1009-8348.2004.04.015
    [4] 徐加放,邱正松,何畅. 深水钻井液中水合物抑制剂的优化[J]. 石油学报,2011,32(1):149-152. doi: 10.7623/syxb201101025

    XU Jiafang, QIU Zhengsong, HE Chang. The inhibitor optimization of gas hydrates in deepwater drilling fluids[J]. Acta Petrolei Sinica, 2011, 32(1):149-152. doi: 10.7623/syxb201101025
    [5] 赵欣,邱正松,江琳,等. 深水钻井液高效水合物抑制剂研究[J]. 中国石油大学学报(自然科学版),2013,37(6):159-164.

    ZHAO Xin, QIU Zhengsong, JIANG Lin, et al. Study on high performance gas hydrate inhibitor in deepwater drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37(6):159-164.
    [6] 张昊,蒋国盛,高绍智,等. 海水钻井液的水合物抑制性实验研究[J]. 钻井液与完井液,2009,26(1):23-25,90-91. doi: 10.3969/j.issn.1001-5620.2009.01.009

    ZHANG Hao, JIANG Guosheng, GAO Shaozhi, et al. Experimental studies on the inhibition of hydrates using seawater drilling fluids[J]. Drilling Fluid & Completion Fluid, 2009, 26(1):23-25,90-91. doi: 10.3969/j.issn.1001-5620.2009.01.009
    [7] 刘坤翔. 深水表层钻井作业工艺及提速技术研究[J]. 石油化工建设,2022,44(3):171-173. doi: 10.3969/j.issn.1672-9323.2022.03.051

    LIU Kunxiang. Research on deepwater surface drilling technology and speed up technology[J]. Petroleum and Chemical Construction, 2022, 44(3):171-173. doi: 10.3969/j.issn.1672-9323.2022.03.051
    [8] 庞照宇,张会增,程远方,等. 深水钻井钻遇水合物地层井壁稳定性研究[J]. 鲁东大学学报(自然科学版),2021,37(3):281-288.

    PANG Zhaoyu, ZHANG Huizeng, CHENG Yuanfang, et al. The wellbore stability during deep-water drilling operations in hydrate formation[J]. Journal of Ludong University(Natural Science Edition), 2021, 37(3):281-288.
    [9] 周建良. 深水表层导管喷射钻进过程中钻井液排量优化研究[J]. 中国海上油气,2012,24(4):50-52. doi: 10.3969/j.issn.1673-1506.2012.04.010

    ZHOU Jianliang. Research on the optimization of delivery capacity during jetting drilling of surface conduct in deep water[J]. China Offshore Oil and Gas, 2012, 24(4):50-52. doi: 10.3969/j.issn.1673-1506.2012.04.010
    [10] 郭元吉,药俊,郭庆,等. 深水表层钻井液密度与流变参数相关性研究[J]. 海洋石油,2011,31(1):77-81. doi: 10.3969/j.issn.1008-2336.2011.01.077

    GUO Yuanji, YAO Jun, GUO Qing, et al. Study on the correlation of deepwater surface drilling fluid density and rheological parameters[J]. Offshore Oil, 2011, 31(1):77-81. doi: 10.3969/j.issn.1008-2336.2011.01.077
    [11] 柯珂,张辉,王磊. 琼东南深水钻井井筒天然气水合物抑制剂推荐浓度确定方法[J]. 科学技术与工程,2012,12(29):7485-7492. doi: 10.3969/j.issn.1671-1815.2012.29.001

    KE Ke, ZHANG Hui, WANG Lei. Calculation method of gas hydrate formation inhibitor concentration for Qiong Dongnan deepwatwer drilling[J]. Science Technology and Engineering, 2012, 12(29):7485-7492. doi: 10.3969/j.issn.1671-1815.2012.29.001
    [12] 吴彬,向兴金,李自立,等. 深水表层动态压井钻井液增黏剂的研制[J]. 钻井液与完井液,2011,28(4):1-3,91. doi: 10.3969/j.issn.1001-5620.2011.04.001

    WU Bin, XIANG Xingjin, LI Zili, et al. Research on viscosifier used in dynamic kill drilling fluids for early stages of deepwater wells[J]. Drilling Fluid & Completion Fluid, 2011, 28(4):1-3,91. doi: 10.3969/j.issn.1001-5620.2011.04.001
    [13] 任冠龙,张崇,董钊,等. 海上气井测试液控温性能调整方法[J]. 钻井液与完井液,2016,33(4):117-121.

    REN Guanlong, ZHANG Chong, DONG Zhao, et al. Temperature control capability of test fluid used in offshore operations[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):117-121.
    [14] 任冠龙,孟文波,张崇,等. 深水气井测试中天然气水合物的抑制和调控方法[J]. 断块油气田,2018,25(1):107-110. doi: 10.6056/dkyqt201801023

    REN Guanlong, MENG Wenbo, ZHANG Chong, et al. Hydrate inhibition and control method for deep water gas well testing[J]. Fault-Block Oil & Gas Field, 2018, 25(1):107-110. doi: 10.6056/dkyqt201801023
    [15] 任冠龙,张崇,董钊,等. 深水气井测试过程中水合物相态曲线的研究与应用[J]. 钻井液与完井液,2018,35(4):120-125. doi: 10.3969/j.issn.1001-5620.2018.04.022

    REN Guanlong, ZHANG Chong, DONG Zhao, et al. Study and application of phase curve of hydrates in deep water gas well testing[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):120-125. doi: 10.3969/j.issn.1001-5620.2018.04.022
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  642
  • HTML全文浏览量:  249
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-09
  • 修回日期:  2022-04-29
  • 录用日期:  2022-06-20
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回