留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种抗高温高密度无土相油基钻井液提切剂

史赫 史海民 倪晓骁 程荣超 张家旗 王建华 闫丽丽

史赫,史海民,倪晓骁,等. 一种抗高温高密度无土相油基钻井液提切剂[J]. 钻井液与完井液,2022,39(1):8-14 doi: 10.12358/j.issn.1001-5620.2022.01.002
引用本文: 史赫,史海民,倪晓骁,等. 一种抗高温高密度无土相油基钻井液提切剂[J]. 钻井液与完井液,2022,39(1):8-14 doi: 10.12358/j.issn.1001-5620.2022.01.002
SHI He, SHI Haimin, NI Xiaoxiao, et al.Study on rheological modifier of high temperature high density clay-free oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(1):8-14 doi: 10.12358/j.issn.1001-5620.2022.01.002
Citation: SHI He, SHI Haimin, NI Xiaoxiao, et al.Study on rheological modifier of high temperature high density clay-free oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid,2022, 39(1):8-14 doi: 10.12358/j.issn.1001-5620.2022.01.002

一种抗高温高密度无土相油基钻井液提切剂

doi: 10.12358/j.issn.1001-5620.2022.01.002
基金项目: 中国石油集团工程技术研究院有限公司院级课题“抗240 ℃油基钻井液核心处理剂研发及体系构建”(CPET202024),“纳米材料对高密度钻井液沉降稳定性影响规律研究”(CPETQ202109)。
详细信息
    作者简介:

    史赫,工程师,博士,1991年生,毕业于中国石油大学(北京)石油工程专业,现在从事钻井液技术研究工作。电话 18612330872;E-mail:sh365441231@163.com

  • 中图分类号: TE254.4

Study on Rheological Modifier of High Temperature High Density Clay-free Oil-based Drilling Fluid

  • 摘要: 针对油基钻井液体系高温环境下沉降稳定性不足的难题,将二聚脂肪酸和二乙烯三胺以物质的量比1∶2反应合成了一种小分子脂肪酸酰胺型抗高温提切剂FAA,并对其进行了结构表征、机理分析和性能评价。流变实验和显微镜观察结果表明,提切剂FAA主要通过在乳液滴之间桥联形成凝胶网络结构来有效提高油基钻井液的结构强度,从而改善其固相悬浮能力及沉降稳定性。在柴油基钻井液体系中的评价结果表明,FAA可有效提高体系的动切力、φ6/φ3读数以及动塑比,并可有效改善体系的高温沉降稳定性,使体系在220 ℃下静置5 d后沉降因子SF小于0.52,无明显沉降现象出现。

     

  • 图  1  抗高温提切剂FAA的合成路线图

    图  2  抗高温提切剂FAA的红外光谱分析结果

    图  3  提切剂FAA加量对油水界面张力的影响

    图  4  提切剂加量对0#柴油、有机土悬浮液和添加有机土 前后油包水乳液在剪切速率为10 s−1下黏度的影响

    图  5  提切剂FAA加量对油包水乳液微观形貌的影响

    表  1  FAA加量对油包水乳液破乳电压及乳化率的影响

    提切剂/%ES /V乳化率/%
    067483
    0.583185
    1.0109789
    1.5122591
    2.0124790
    下载: 导出CSV

    表  2  提切剂FAA加量对不同油水比油基钻井液体系常规性能的影响

    油水比FAA/
    %
    测试
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    YP/PV/
    Pa/mPa·s
    FLHTHP/
    mL
    ES/
    V
    90∶100老化前23.5230.52/11.0/0.50.028.6787
    老化后22.02200/00/00463
    1老化前36.0324.05/43.0/4.00.134.2989
    老化后37.5343.54/32.0/3.00.10699
    80∶200老化前34.0322.03/21.5/1.00.066.2933
    老化后31.0301.01/10.5/0.50.03578
    1老化前47.0416.08/74.0/6.00.155.61107
    老化后44.0404.05/42.0/3.00.10741
    70∶300老化前45.5432.53/21.5/1.00.064.4544
    老化后42.5411.52/11.0/00.04473
    1老化前58.04711.010/86.0/8.00.233.2826
    老化后54.0468.07/64.0/5.00.17735
      注:老化条件为180 ℃、16 h;流变性测试温度为65 ℃;高温高压滤失量测试温度为180 ℃
    下载: 导出CSV

    表  3  不同老化温度下提切剂FAA对油基钻井液常规性能的影响

    FAA/
    %
    测试条件开罐
    状态
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    YP/PV/
    Pa/mPa·s
    FLHTHP/
    mL
    ES/
    V
    0老化前34.0322.03/21.5/1.00.06933
    180 ℃×16 h软沉31.0301.01/10.5/0.50.036.2578
    200 ℃×16 h硬沉27.5270.51/00/0.50.029.8402
    220 ℃×16 h硬沉28.029−1.00/00/014.2359
    240 ℃*16 h硬沉26.528−1.50/00/016.4316
    1老化前47.0416.08/74.0/6.00.151107
    180 ℃×16 h无沉44.0404.05/42.0/3.00.105.6741
    200 ℃×16 h无沉45.0414.05/42.0/3.00.106.2762
    220 ℃×16 h无沉42.0393.04/32.0/2.50.076.8643
    240 ℃×16 h软沉36.0351.01/00/0.50.039.0392
    220 ℃×32 h 无沉47.0425.05/43.0/4.00.12785
    220 ℃×48 h 无沉45.0423.04/33.0/3.50.07811
    220 ℃×72 h 无沉47.0434.04/33.0/4.00.095.8835
      注:流变性测试温度为65 ℃;高温高压滤失量测试温度为180 ℃
    下载: 导出CSV

    表  4  油基钻井液岩屑污染评价实验

    岩屑污染量/
    %
    测试
    条件
    开罐
    状态
    流动
    状态
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    YP/PV/
    Pa/mPa·s
    FLHTHP/
    mL
    ES/
    V
    5老化前良好494365/42/30.147.0915
    老化后无沉433854/32/30.13606
    10老化前良好585266/53/40.125.61107
    老化后无沉514655/42/30.11741
    15老化前良好726489/86/80.134.21296
    老化后无沉7162910/96/100.15982
    20老化前稠化严重96821413/128/130.175.41431
    老化后无沉1191011816/148/150.18943
      注:老化温度为220 ℃;流变性测试温度为65 ℃;高温高压滤失量测试温度为180 ℃
    下载: 导出CSV

    表  5  提切剂FAA对油基钻井液 高温沉降稳定性的影响

    FAA/
    %
    t静置/
    d
    ρ上部/
    g·cm-3
    ρ下部/
    g·cm-3
    沉降
    状态
    SF
    001.962.08软沉0.515
    11.832.12软沉0.537
    31.682.24硬沉0.571
    51.542.32硬沉0.601
    71.522.36硬沉0.608
    102.032.03无沉0.500
    12.032.03无沉0.500
    32.012.06无沉0.506
    51.992.07无沉0.509
    71.942.11软沉0.521
      注:静置温度为220 ℃
    下载: 导出CSV
  • [1] 刘明华,胡小燕,国安平,等. 油基钻井液用抗高温乳化剂的合成及性能[J]. 精细石油化工进展,2017,18(4):9-12. doi: 10.3969/j.issn.1009-8348.2017.04.003

    LIU Minghua, HU Xiaoyan, GUO Anping, et al. Synthesis and performance of anti-high temperature emulsifier for oil-based drilling fluid[J]. Fine Petrochemical Progress, 2017, 18(4):9-12. doi: 10.3969/j.issn.1009-8348.2017.04.003
    [2] 唐军,吴正良,李杰,等. 超低密度仿油基钻井液工艺技术及应用[J]. 钻采工艺,2013,36(1):94-97. doi: 10.3969/J.ISSN.1006-768X.2013.01.29

    TANG Jun, WU Zhengliang, LI Jie, et al. Technology and application of ultra-low density oil-like drilling fluid[J]. Drilling & Production Technology, 2013, 36(1):94-97. doi: 10.3969/J.ISSN.1006-768X.2013.01.29
    [3] 张清廉,朱思成,孙惠章,等. 低伤害油基压井液的研制[J]. 山东师大学报(自然科学版),1997,12(2):164-166.

    ZHANG Qinglian, ZHU Sicheng, SUN Huizhang, et al. Development of low-damage oil-based well killing fluid[J]. Journal of Shandong Normal University(Natural Science), 1997, 12(2):164-166.
    [4] 杨双春,韩颖,侯晨虹,等. 环保型白油基钻井液研究和应用进展[J]. 油田化学,2017,34(4):739-744.

    YANG Shuangchun, HAN Ying, HOU Chenhong, et al. Research and application progress of environmentally friendly white oil-based drilling fluids[J]. Oilfield Chemistry, 2017, 34(4):739-744.
    [5] 刘均一,邱正松,黄维安,等. 南海东方气田高密度抗高温钻井液完井液室内研究[J]. 石油钻探技术,2013,41(4):78-82. doi: 10.3969/j.issn.1001-0890.2013.04.017

    LIU Junyi, QIU Zhengsong, HUANG Weian, et al. Laboratory study of high-density and high-temperature resistant drilling fluid and completion fluid in Dongfang Gas Field, South China Sea[J]. Petroleum Drilling Techniques, 2013, 41(4):78-82. doi: 10.3969/j.issn.1001-0890.2013.04.017
    [6] 王健,彭芳芳,徐同台,等. 钻井液沉降稳定性测试与预测方法研究进展[J]. 钻井液与完井液,2012,29(5):79-83. doi: 10.3969/j.issn.1001-5620.2012.05.022

    WANG Jian, PENG Fangfang, XU Tongtai, et al. Research progress of testing and prediction methods of drilling fluid settlement stability[J]. Drilling Fluid & Completion Fluid, 2012, 29(5):79-83. doi: 10.3969/j.issn.1001-5620.2012.05.022
    [7] 李家学,蒋绍宾, 晏智航,等. 钻完井液静态沉降稳定性评价方法[J]. 钻井液与完井液,2019,36(5):575-580. doi: 10.3969/j.issn.1001-5620.2019.05.009

    LI Jiaxue,JIANG Shaobin,YAN Zhihang,et al. Evaluation method of static settlement stability of drilling and completion fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):575-580. doi: 10.3969/j.issn.1001-5620.2019.05.009
    [8] ZHUANG Guanzheng, ZHANG Zepeng, JABER M, et al. Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids[J]. Journal of Industrial and Engineering Chemistry, 2017, 56: 248-257.
    [9] SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4):764-769. doi: 10.1016/S1876-3804(18)30079-X
    [10] SUN Wujuan, TIAN Guoqing, HUANG Hangjuan, et al. Synthesis and characterisation of a multifunctional oil-based drilling fluid additive[J]. Environmental Earth Sciences, 2018, 77(24):793. doi: 10.1007/s12665-018-7982-5
    [11] ZHUANG Guanzheng, ZHANG Zepeng, GAO Jiahua, et al. Influences of surfactants on the structures and properties of organo-palygorskite in oil-based drilling fluids[J]. Microporous and Mesoporous Materials, 2017, 244: 37-46.
    [12] HERMOSO J, MARTINEZ-BOZA F, GALLEGOS C. Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure[J]. Applied Clay Science, 2014, 87: 14-21.
    [13] HILFIGER M G, THAEMLITZ C J, MOELLENDICK E, et al. Investigating the chemical nature of flat rheology [M]. SPE Deepwater Drilling and Completions Conference. Society of Petroleum Engineers. 2016.
    [14] HUANG Xianbin, JIANG Guancheng, HE Yinbo, et al. Improvement of rheological properties of invert drilling fluids by enhancing interactions of water droplets using hydrogen bonding linker[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506: 467-475.
    [15] HE Yinbo, JIANG Guancheng, DENG Zhengqiang, et al. Polyhydroxy gemini surfactant as a mechano-responsive rheology modifier for inverted emulsion drilling fluid[J]. RSC Advances, 2018, 8(1):342-353. doi: 10.1039/C7RA11300E
    [16] 王星媛, 陆灯云, 袁志平. 川西地区油基钻井液井壁强化技术[J]. 石油钻探技术, 2021, 49(1): 34-40.

    WANG Xingyuan, LU Dengyun, YUAN Zhiping. Borehole strengthening technology with oil-based drilling fluid in the western Sichuan basin[J].Petroleum Drilling Techniques, 2021, 49(1): 34-40.
    [17] 王志远,黄维安,范宇,等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术, 2021, 49(5): 31-38.

    WANG Zhiyuan, HUANG Weian, FAN Yu, et al.Technical research and application of oil base drilling fluid with strong plugging property in Changning block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31-38.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  729
  • HTML全文浏览量:  270
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2021-11-05
  • 录用日期:  2021-07-03
  • 刊出日期:  2022-05-06

目录

    /

    返回文章
    返回