留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体型妥尔油沥青酰胺树脂的合成及降滤失性能评价

赵冲 张现斌 邱正松 钟汉毅 张健 赵颖 高宁

赵冲,张现斌,邱正松,等. 液体型妥尔油沥青酰胺树脂的合成及降滤失性能评价[J]. 钻井液与完井液,2021,38(5):616-622 doi: 10.12358/j.issn.1001-5620.2021.05.012
引用本文: 赵冲,张现斌,邱正松,等. 液体型妥尔油沥青酰胺树脂的合成及降滤失性能评价[J]. 钻井液与完井液,2021,38(5):616-622 doi: 10.12358/j.issn.1001-5620.2021.05.012
ZHAO Chong, ZHANG Xianbin, QIU Zhengsong, et al.Synthesis of liquid tall oil asphalt amide resin and evaluation of its filtration control performance[J]. Drilling Fluid & Completion Fluid,2021, 38(5):616-622 doi: 10.12358/j.issn.1001-5620.2021.05.012
Citation: ZHAO Chong, ZHANG Xianbin, QIU Zhengsong, et al.Synthesis of liquid tall oil asphalt amide resin and evaluation of its filtration control performance[J]. Drilling Fluid & Completion Fluid,2021, 38(5):616-622 doi: 10.12358/j.issn.1001-5620.2021.05.012

液体型妥尔油沥青酰胺树脂的合成及降滤失性能评价

doi: 10.12358/j.issn.1001-5620.2021.05.012
基金项目: 中国石油天然气集团公司重大科技专项“油田用化工新材料产品开发”(2020E-28);天津市科技计划项目“非常规和深层油气资源开发钻井液关键技术研究”(19PTSYJC00120)资助
详细信息
    作者简介:

    赵冲,1974年生,在读博士研究生,主要从事钻井液新技术研究工作。E-mail:zhaochong@cnpc.com.cn

    通讯作者:

    邱正松,E-mail:qiuzs63@sina.com

  • 中图分类号: TE254.4

Synthesis of Liquid Tall Oil Asphalt Amide Resin and Evaluation of Its Filtration Control Performance

  • 摘要: 为减少传统沥青类降滤失剂对环境的影响,并提高油基钻井液的高温封堵能力,以天然植物油加工尾料妥尔油沥青为原料,采用顺丁烯二酸酐和多元有机胺依次对其进行改性,所得产物溶于环保溶剂油,制备得到液体降滤失剂BZ-FLA。红外光谱分析和核磁共振分析表明,最终产物BZ-FLA主要为顺丁烯二酸酐改性的树脂酸和多元有机胺缩合而成的交联型妥尔油沥青酰胺树脂。分别评价液体降滤失剂在典型油基钻井液中以及无土相油基钻井液中的性能,结果表明,液体降滤失剂BZ-FLA抗温达180 ℃,加量为0.75%~1.0%时可将钻井液高温高压滤失量降至4.0 mL以内,与常规沥青降滤失剂加量3%的效果相当。BZ-FLA与沥青类和褐煤类降滤失剂复合使用,可进一步提高油基钻井液的封堵能力。BZ-FLA在无土相油基钻井液中降滤失效果同样显著。

     

  • 图  1  液体降滤失剂BZ-FLA的红外光谱分析

    图  2  液体降滤失剂BZ-FLA产品及中间产物的1H-NMR图谱

    图  3  0.75%BZ-FLA与不同常规降滤失剂复配后的性能

    图  4  不同降滤失剂实验浆高温高压滤饼

    表  1  液体降滤失剂BZ-FLA加量对油基钻井液性能的影响

    BZ-FLA/
    %
    实验
    条件
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    FLHTHP/
    mL
    h/
    mm
    ES/
    V
    0热滚前343.57/52.0/4.5538
    热滚后404.59/84.0/5.09.64.0438
    0.50热滚前303.04/32.0/3.0536
    热滚后427.08/74.0/5.03.61.0729
    0.75热滚前354.05/42.0/3.0592
    热滚后4510.011/94.5/5.03.61.0764
    1.0热滚前364.06/53.0/4.0637
    热滚后4612.013/116.0/8.02.81.0964
    1.5热滚前384.06/53.0/4.5649
    热滚后7332.525/2010.0/20.02.41.01379
    3.0热滚前405.07/63.0/4.5674
    热滚后8039.027/2614.0/24.01429
    3.0*热滚前382.06/53.0/5.0721
    热滚后517.012/115.5/6.04.62.5469
      注:*为沥青降滤失剂;h为泥饼厚度;热滚条件为150 ℃、16 h
    下载: 导出CSV

    表  2  液体降滤失剂BZ-FLA抗温能力评价

    BZ-FLA/
    %
    T/
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    FLHTHP/
    mL
    h/
    mm
    ES/
    V
    0常温343.57/52.0/4.5538
    150404.59/84.0/5.09.64.0438
    180423.05/42.5/4.014.85.0409
    200512.03/21.5/2.028.66.5389
    0.75常温354.05/42.0/3.0592
    1504510.011/94.5/5.03.61.0764
    180486.07/63.5/6.07.61.0680
    200383.04/32.0/8.022.01.5587
    1.0常温364.06/53.0/4.0637
    1504612.013/116.0/8.02.81.0964
    180488.09/84.0/6.04.81.0865
    200434.05/42.5/10.016.81.5768
    3.0*常温382.06/53.0/5.0721
    150517.012/115.5/6.04.62.5469
    180603.55/43.0/3.58.83.0427
    200652.03/21.5/2.015.65.0357
      注:*为沥青降滤失剂;h为泥饼厚度
    下载: 导出CSV

    表  3  BZ-FLA高温高压渗透性封堵效果评价

    降滤失剂FLHPHT/
    mL(150 ℃)
    FLHPHT/
    mL(180 ℃)
    170-55型
    砂盘
    170-53型
    砂盘
    170-55型
    砂盘
    170-53型
    砂盘
    05.67.66.88.6
    0.75% BZ-FLA2.43.22.83.2
    1.0% BZ-FLA2.23.02.42.8
    3.0%沥青类2.43.42.83.0
    3.0%有机褐煤2.83.63.03.6
    0.75% BZ-FLA+
    3%沥青
    1.22.02.22.4
    0.75% BZ-FLA+
    3%有机褐煤
    1.42.22.22.4
      注:测试压力为6.9 MPa
    下载: 导出CSV

    表  4  BZ-FLA在高密度油基钻井液中的性能

    ρ/
    g/cm3
    BZ-FLA/
    %
    T/
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    FLHTHP/
    mL
    ES/
    V
    2.20.75常温56.013.515/148.5/11.01096
    15054.08.58/74.0/6.03.21359
    18055.05.56/53.0/6.04.01402
    2.21.0常温58.015.517/168.5/13.01245
    15055.010.010/85.0/6.02.81365
    18057.06.08/64.0/5.53.81564
    2.40.75常温61.014.015/147.5/10.51331
    15055.08.09/75.0/6.54.81457
    18052.05.06/53.0/4.05.61679
    2.41.0常温65.01517/158.0/12.01386
    15057.08.010/95.0/7.53.81498
    18055.04.06/53.5/5.54.81708
    下载: 导出CSV

    表  5  BZ-FLA在无土相油基钻井液中的性能

    BZ-FLA/
    %
    T/
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa
    FLHTHP/
    mL
    h/
    mm
    ES/
    V
    0常温557.07/63.5/5.51079
    150466.06/53.5/5.08.42.51016
    180503.04/32.0/4.09.23.0871
    1.0常温627.07/63.5/6.51186
    150487.07/63.5/7.05.61.01004
    180523.04/32.0/5.06.41.0882
    1.5常温637.58/74.0/7.01267
    150507.08/74.0/7.03.61.01037
    180544.56/53.0/6.54.01.0967
    2.0常温669.510/84.5/6.01386
    150538.09/84.0/7.03.41.01128
    180576.06/53.0/6.03.61.01015
      注:h为泥饼厚度
    下载: 导出CSV
  • [1] 吴雄军,林永学,宋碧涛,等. 顺北油气田奥陶系破碎性地层油基钻井液技术[J]. 钻井液与完井液,2020,37(6):701-708. doi: 10.3969/j.issn.1001-5620.2020.06.004

    WU Xiongjun, LIN Yongxue, SONG Bitao, et al. Oil-base drilling fluid technology for ordovician fractured formation in Shunbei oil and gas field[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):701-708. doi: 10.3969/j.issn.1001-5620.2020.06.004
    [2] 王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29-33. doi: 10.11911/syztjs.2020007

    WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-base drilling fluid technology of Kuqa piedmont high-pressure brine formation in Tarim oilfield[J]. Petroleum Drilling Technology, 2020, 48(2):29-33. doi: 10.11911/syztjs.2020007
    [3] 左京杰,张振华,姚如钢,等. 川南页岩气地层油基钻井液技术难题及案例分析[J]. 钻井液与完井液,2020,37(3):294-300. doi: 10.3969/j.issn.1001-5620.2020.03.005

    ZUO Jingjie, ZHANG Zhenhua, YAO Rugang, et al. Technical difficulties and case analysis of oil base drilling fluid in shale gas formation in south Sichuan[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):294-300. doi: 10.3969/j.issn.1001-5620.2020.03.005
    [4] YAN, Lili, WANG, Jianhua, ZHANG, Jiaqi, et al. Understanding and research on the drilling fluid technology for shale gas horizontal wells in south Sichuan, China. [C]// IPTC 19587, The International Petroleum Technology Conference, Dhahran, Kingdom of Saudi Arabia, 2020.
    [5] 吴江,李龙,任冠龙,等. 海上复杂易垮塌地层高性能油基钻井液研发与应用[J]. 钻井液与完井液,2018,35(5):55-60. doi: 10.3969/j.issn.1001-5620.2018.05.011

    WU Jiang, LI Long, REN Guanlong, et al. Development and application of high performance oil base drilling fluid in complex and collapse formation offshore[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):55-60. doi: 10.3969/j.issn.1001-5620.2018.05.011
    [6] 王晓军,白冬青,孙云超,等. 页岩气井强化封堵全油基钻井液体系——以长宁-威远国家级页岩气示范区威远区块为例[J]. 天然气工业,2020,40(6):107-114.

    WANG Xiaojun,BAI Dongqing,SUN Yunchao,et al. Taking Weiyuan block, Weiyuan national shale gas demonstration area- Changning as an example[J]. Natural Gas Industry, 2020, 40(6):107-114.
    [7] 程荣超,王建华,闫丽丽,等. 油基钻井液用抗高温树脂类封堵剂的研制[J]. 当代化工研究,2021(5):160-162.

    CHENG Rongchao , WANG Jianhua, YAN Lili, et al. Development of high temperature resistant resin plugging agent for oil base drilling fluid[J]. Modern Chemical Research, 2021(5):160-162.
    [8] 周研,蒲晓林. 油基钻井液用降滤失剂研究现状[J]. 化学世界,2020,61(1):7-15.

    ZHOU Yan, PU Xiaolin. Research status of fluid loss reducers for oil - based drilling fluids[J]. Chemistry World, 2020, 61(1):7-15.
    [9] 黄贤斌, 蒋官澄, 邓正强. 水性丙烯酸树脂在油包水钻井液中的作用[J]. 钻井液与完井液, 2017, 34(2): 26-32.

    HUANG Xianbin, JIANG Guancheng, DENG Zhengqiang. The role of waterborne acrylic resin in water-in-oil drilling fluid [J]. Drilling Fluid & Completion Fluid, 2017, 34(2): 26-32.
    [10] MILLER J J. Metallic soaps of modified tall oil acids: US 20050137093 [P]. 2005.
    [11] MILLER J J. Metallic soaps of modified fatty acids and rosin acids and methods of making and using same: US 20070259790 [P]. 2007.
    [12] 宋胜梅,王亚明,谢惠定. 松香结晶原因分析[J]. 林产化学与工业,2001,21(3):77-82.

    SONG Shengmei, WANG Yaming, XIE Huiding. Analyses on cause of rosin crystallization[J]. Chemistry and Industry of Forest Products, 2001, 21(3):77-82.
    [13] 孙金声,黄贤斌,蒋官澄,等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发,2018,45(4):713-718.

    SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration & Development, 2018, 45(4):713-718.
    [14] 黄贤斌,蒋官澄,邓正强. 水性丙烯酸树脂在油包水钻井液中的作用[J]. 钻井液与完井液,2017,34(2):26-32.

    HUANG Xianbin, JIANG Guancheng, DENG Zhengqiang. Application of aqueous acrylic resin in invert emulsion drilling fluids[J]. Drilling Fluid & Completion Fluid, 2017, 34(2):26-32.
    [15] 张现斌,赵冲,王伟忠,等. 矿物油基钻井液低剪切流变行为调节技术研究[J]. 中国石油勘探,2015,20(4):63-70. doi: 10.3969/j.issn.1672-7703.2015.04.007

    ZHANG Xianbin, ZHAO Chong, WANG Weizhong, et al. Technologies to modify low-shear rate rheology behaviors of mineral oil based drilling fluids[J]. China Petroleum Exploration, 2015, 20(4):63-70. doi: 10.3969/j.issn.1672-7703.2015.04.007
    [16] 杨小华. 松香/油脂基二元酸及其聚酰胺固化剂的制备与性能研究[D]. 中国林业科学研究院, 2013

    YANG Xiaohua. Synthesis, properties of rosin/oil based diacid and its polyamide curing agents [D]. Chinese Academy of Forestry, 2013.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  47
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 录用日期:  2020-03-11
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回