留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分级堵漏技术在鄂尔多斯盆地东部的应用

赵宏波 杨松 陈国飞 李兴宝 王建峰 齐鹏飞

赵宏波,杨松,陈国飞,等. 分级堵漏技术在鄂尔多斯盆地东部的应用[J]. 钻井液与完井液,2021,38(5):583-592 doi: 10.12358/j.issn.1001-5620.2021.05.007
引用本文: 赵宏波,杨松,陈国飞,等. 分级堵漏技术在鄂尔多斯盆地东部的应用[J]. 钻井液与完井液,2021,38(5):583-592 doi: 10.12358/j.issn.1001-5620.2021.05.007
ZHAO Hongbo, YANG Song, CHEN Guofei, et al.Study and application of mud loss control technique with graded lcms in the east of Ordos basin[J]. Drilling Fluid & Completion Fluid,2021, 38(5):583-592 doi: 10.12358/j.issn.1001-5620.2021.05.007
Citation: ZHAO Hongbo, YANG Song, CHEN Guofei, et al.Study and application of mud loss control technique with graded lcms in the east of Ordos basin[J]. Drilling Fluid & Completion Fluid,2021, 38(5):583-592 doi: 10.12358/j.issn.1001-5620.2021.05.007

分级堵漏技术在鄂尔多斯盆地东部的应用

doi: 10.12358/j.issn.1001-5620.2021.05.007
基金项目: 中国石油勘探与生产分公司攻关项目“致密油气藏提速提效钻完井技术研究”(1902-3-2)资助
详细信息
    作者简介:

    赵宏波,高级工程师,1976年生, 1999年毕业于江汉石油学院地质专业,主要从事地质勘探、钻井、完井和油气藏开发方面的研究工作。E-mail:zhb722_cq@petrochina.com.cn

  • 中图分类号: TE282

Study and Application of Mud Loss Control Technique with Graded LCMs in the East of Ordos Basin

  • 摘要: 为了解决鄂尔多斯盆地东部刘家沟组-石千峰组地层的井漏问题,通过扫描电镜分析岩心样品、X衍射分析岩屑样品和对区域地质资料的研究,发现高含伊利石和绿泥石、低含高岭土和蒙脱石的刚性地层遇水失稳和网状缝发育是引起该区井漏严重和堵漏困难的主要原因。从抑制裂缝壁遇水失稳和用含不同直径刚性颗粒的桥塞型复合堵漏剂封堵不同宽度裂缝的思路出发,通过实验室优化和室内模拟实验,形成了分级堵漏剂配方及分级堵漏技术。分级堵漏剂主要成分包含0.4%~0.5%生物凝胶增稠剂、5%~7%钻井液用复合堵漏剂Ⅱ和含刚性颗粒不等的桥塞型复合堵漏剂。通过8口井现场应用表明,分级堵漏技术能够封堵裂缝宽度小于6 mm的裂缝性复杂井漏,堵漏后漏点地层承压高,满足后续钻井施工承压要求,且在堵漏后至完井期间未发生井漏。研究结果表明,分级堵漏技术适合鄂尔多斯盆地东部刘家沟组-石千峰组复杂裂缝性井漏,值得进一步推广。

     

  • 图  1  扫描电镜观察大吉50井刘家沟组(井深2003.12 m)岩心裂缝和黏土矿物

    图  2  楔形封板实验中不同分级堵漏剂配方失水量随压强的变化

    注:①一级堵漏剂1#配方,楔形封层数为单层,楔形封开度 为1 mm×0.5 mm;②二级堵漏剂2#配方,楔形封层数为双层,楔形封开度为2 mm×1 mm /1 mm×0.5 mm;③三级堵漏剂3#配方,楔形封层数为双层,楔形封开度为4 mm×3 mm /3 mm×2 mm;④三级堵漏剂3#配方,楔形封层数为双层,楔形封开度为2 mm×1 mm /1 mm×0.5 mm;⑤四级堵漏剂4#配方,楔形封层数为双层,楔形封开度为6 mm×5 mm/5 mm×4 mm;⑥四级堵漏剂4#配方,楔形封层数为双层,楔形封开度为4 mm×3 mm /3 mm×2 mm;⑦四级堵漏剂4#配方,楔形封层数为双层,楔形封开度为2 mm×1 mm /1 mm×0.5 mm;压降均为0

    图  3  三级堵漏剂堵漏时井口压力随时间的变化

    表  1  刘家沟组-石千峰组砂岩岩屑中各种矿物含量

    样号地层石英/
    %
    钾长
    石/ %
    斜长
    石/%
    方解
    石/%
    白云
    石/%
    赤铁
    矿/%
    黏土矿物
    总量/%
    1#刘家沟组48916121212
    2#507274129
    3#千24241681425
    4#千44422221425
    5#千551222322
    平均值475.520.65.61318.6
    下载: 导出CSV

    表  2  X衍射分析岩石基质中不同黏土矿物含量结果

    样号地层高岭
    石/%
    绿泥
    石/%
    伊利
    石/%
    伊/蒙混
    层/%
    伊/蒙混
    层比/%
    1#刘家沟组57355320
    2#57355320
    3#千234415220
    4#千412435420
    5#千535355720
    平均值3.4537.853.820
    下载: 导出CSV

    表  3  一级堵漏浆性能随DRP-06增稠剂加量的变化

    DRP-06/
    %
    FV/
    s
    ρ/
    g·cm−3
    FL/
    mL
    现象黏度
    0.2321.0219.6黏度低,悬浮性差,静置24 h全部分层
    0.3341.0217.0黏度较低,悬浮性一般,静置24 h有析水偏低
    0.4411.0211.2黏度较高,悬浮性较好,静置24 h无析水适中
    0.5431.0210.4黏度较高,悬浮性较好,静置24 h无析水适中
    0.6501.0216.8黏度高,悬浮性好,静置24 h无析水偏高
    0.7511.0216.6黏度高,悬浮性好,静置24 h无析水偏高
    下载: 导出CSV

    表  4  一级堵漏浆性能随钻井液用 复合堵漏剂Ⅱ加量的变化

    复合堵漏
    剂Ⅱ/%
    FLAPI/
    mL
    现象结论
    217.0黏度较低,悬浮性一般,
    静置12 h有沉降
    悬浮性差
    316.4黏度较低,悬浮性一般,
    静置12 h有沉降
    悬浮性差
    416.8黏度较低,悬浮性一般,
    静置12 h有析水
    悬浮性差
    510.4黏度较高,悬浮性较好,
    静置12 h少量沉降
    适中
    612.0黏度较高,悬浮性较好,
    静置12 h无沉降
    适中
    711.2黏度高,悬浮性较好,
    静置12 h无沉降
    可用
    89.5黏度高,悬浮性好,
    静置12 h无沉降
    可用
    下载: 导出CSV

    表  5  一级堵漏浆性能随复合堵漏剂加量的变化

    复合堵漏剂/
    %
    FLAPI/
    mL
    现象黏度
    28.2黏度较高,悬浮性较好,
    静置12 h少量沉降
    较低
    38.6黏度较高,悬浮性较好,
    静置12 h少量沉降
    较低
    410.6黏度较高,悬浮性较好,
    静置12 h少量沉降
    较低
    58.0黏度较高,悬浮性较好,
    静置12 h无沉降
    适中
    67.4黏度较高,悬浮性较好,
    静置12 h无沉降
    适中
    77.2黏度较高,悬浮性较好,
    静置12 h无沉降
    适中
    86.6黏度较高,悬浮性较好,
    静置12 h无沉降
    适中
    99.4黏度高,悬浮性好,
    静置12 h无沉降
    可用
    108.4黏度高,悬浮性好,
    静置12 h无沉降
    可用
    下载: 导出CSV

    表  6  二级堵漏浆性能随桥塞复合型堵漏剂Ⅰ加量的变化

    复合型堵
    漏剂Ⅰ/%
    FLAPI/
    mL
    状态结论
    313.0悬浮性较好,静置12 h无沉降可用
    410.0悬浮性较好,静置12 h无沉降可用
    511.0悬浮性较好,静置12 h无沉降可用
    610.0悬浮性较好,静置12 h无沉降可用
    710.5悬浮性较好,静置12 h无沉降可用
    810.0悬浮性较好,静置12 h无沉降可用
    913.5悬浮性较好,静置12 h无沉降可用
    1012.0悬浮性稍差,静置12 h少量沉降可用
    下载: 导出CSV

    表  7  三级堵漏浆悬浮性能随桥塞 复合型堵漏剂Ⅱ含量的变化

    复合型堵
    漏剂Ⅱ/%
    FLAPI/
    mL
    状态结论
    316.0悬浮性较好,静置12 h无沉降可用
    412.0悬浮性较好,静置12 h无沉降适中
    513.2悬浮性较好,静置12 h有少量沉降适中
    611.6悬浮性较好,静置12 h有少量沉降适中
    712.4悬浮性较好,静置12 h有少量沉降适中
    811.8悬浮性较好,静置12 h有少量沉降适中
    915.8悬浮性较好,静置12 h沉降增多可用
    1013.8悬浮性较差,静置12 h沉降增多可用
    下载: 导出CSV

    表  8  四级堵漏剂配方统计表


    堵漏
    颗粒类型堵漏剂配方颗粒
    直径/
    mm
    封堵裂
    缝宽度/
    mm
    1#一级增稠材料+
    纤维材料
    水+(0.4%~05%)生物凝胶增稠剂DRP-06+(5%~7%)钻井液用复合堵漏剂Ⅱ+(5%~8%)复合堵漏剂≤0.5≤0.6
    2#二级增稠材料+
    纤维材料+
    刚性颗粒
    1#+(4%~8%)桥塞复合型堵漏剂Ⅰ≤1.0≤1.4
    3#三级2#+(4%~8%)桥塞复合型堵漏剂Ⅱ≤2.4≤3.4
    4#四级3#+(4%~8%)桥塞复合型堵漏剂Ⅲ≤5≤6.0
    下载: 导出CSV
  • [1] 蔡利山,苏长明,刘金华. 易漏地层承压能力分析[J]. 石油学报,2010,31(2):311-317.

    CAI Lishan, SU Changming, LIU Jinhua. Annalysis on pressure-bearing capacity of leacag formation[J]. Acta Petrollei Sinica, 2010, 31(2):311-317.
    [2] DUPRIST F E. Fracture closure stress (FCS) and lost returns practices[R]. SPE 92192, 2005.
    [3] SWEATMAN R, WANG H, XENAKIS H. Wellbore stabilization increases fracture gradient and controls losses flows /during drilling[R]. SPE 88701, 2004.
    [4] 王贵,蒲晓林. 提高地层承压能力的钻井液堵漏作用机理[J]. 石油学报,2010,31(6):1009-1012.

    WANG Gui, PU Xiaolin. Plugging mechanism of drilling fluid by enhancing wellbore pressure[J]. Acta Petrollei Sinica, 2010, 31(6):1009-1012.
    [5] SONG J H, ROJAS J C. Preventing mud losses by wellbore strengthening[R]. SPE 101593, 2006.
    [6] ALBERTY M W, MCLEAN M R. A physical modle for stress cages[R]. SPE 90493, 2004.
    [7] ASTON M S, ALBERTY M W, MCLEAN M R, et al. Drilling fluids for wellbore strengthening[R]. SPE 87130, 2004.
    [8] 王贵,蒲晓林,文志明,等. 基于断裂力学的诱导裂缝性控制机理分析[J]. 西南石油大学学报:自然科学版,2011,33(1):131-134.

    WANG Gui, PU Xiaolin, WEN Zhiming, et al. Mechanism of controlling lost circulation in induced fracture formation based on fracture mechanics[J]. Journal of Southwest Petroleum University:Science and Technology Edition, 2011, 33(1):131-134.
    [9] 李家学,黄进军,罗亚平,等. 随钻防漏堵漏技术研究[J]. 钻井液与完井也,2008,25(3):25-28.

    LI Jiaxue, HUANG Jinjun, LUO Pingya, et al. Research on mud loses prevent and control[J]. Drilling Fluid & Completion Fluid, 2008, 25(3):25-28.
    [10] 黄进军,罗亚平,李家学,等. 提高地层承压能力技术[J]. 钻井液与完井液,2009,26(3):60-70.

    HUANG Jinjun, LUO Pingya, LI Jiaxue, et al. A study on enhancement of formation bearing resistance[J]. Drilling Fluid & Completion Fluid, 2009, 26(3):60-70.
    [11] 黄利新,张光明. 固相颗粒封堵孔隙吼道的机理研究[J]. 江汉石油学院学报,1999,21(2):41-43.

    HUANG Lixin, ZHANG Guangming. The mechanism study of the solid particles blocking pore roar channel[J]. Journal of Jianghan Petroleum Institute, 1999, 21(2):41-43.
    [12] 任岩, 曹宏, 姚逢昌, 等. 岩石脆性评价方法进展[J]. 石油地球物理勘探, 2018, 53(4): 875-886.

    REN Yan, CAO Hong, YAO Fengchang, et al. The evaluation methods progress of the rocks brittlenness[J]. Petroleum Geophysical Exploration, 2018, 53(4): 875-886.
    [13] 张蕊,姜振权,孙强,等. 脆性岩石变形机制与渗透率关系研究[J]. 高校地质学报,2012,18(4):719-723.

    ZHANG Rui, JIANG Zhenquan, SUN Qiang, et al. Study on the relationship of the brittle deformation mechanism and permeability of rocks[J]. Geological Journal of China Universities, 2012, 18(4):719-723.
    [14] 刘泉声,王志俭. 砂-膨润土混合物膨胀力影响因素的研究[J]. 岩石力学与工程学报,2002,21(7):1054-1058.

    LIU Quansheng, WANG Zhijian. Influence factors of sand-bentonite mixtures on the swelling pressure[J]. Journal of Rock Mechanics and Engineering, 2002, 21(7):1054-1058.
    [15] 查甫生,杜延军,刘松玉,等. 自由膨胀比指标评价改良膨胀土的膨胀性[J]. 岩土工程学报,2008,30(10):1502-1509.

    CHA Pusheng, DU Yanjun, LIU Songyu, et al. Evaluation of swelling capacity of stabilized expansive soils using free swell ratio method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10):1502-1509.
    [16] 公繁号,鲍志东,范正平,等. 自生绿泥石对砂岩储集层影响的新认识[J]. 新疆石油地质,2011,32(4):338-341.

    GONG Fanhao, BAO Zhidong, FAN Zhengping, et al. New sight about affect of authigenic chlorite on sandstone reservoir[J]. Xinjiang Petroleum Geology, 2011, 32(4):338-341.
    [17] 徐敬尧,肖睿,田炜兰,等. 伊利石的开发利用现状[J]. 有色金属,2005,21(2):13-16.

    XU Jingyao, XIAO Rui, TIAN Weilan, et al. Status of exploiture and application of illite[J]. Non-ferrous Mining and Metallurgy, 2005, 21(2):13-16.
    [18] ENKIN R J, YANG Z Y, CHEN Y, et al. Paleomagneticconstraints on the geodynamic history of the major blocks of China from the permian to the present[J]. Journal of Geophysical Research, 1992, 97(B10):13953-13989.
    [19] MENG Qingren, ZHANG Guowei. Geologic framework and tectonic evolution of the Qinling orogen, entral China[J]. Tectonophysics, 2000, 323(3–4):183-196.
    [20] 姜琳,王清晨,王香增,等. 鄂尔多斯盆地东南部中生界地层节理发育特征与古应力场[J]. 岩石学报,2013,29(5):1774-1790.

    JIANG Lin, WANG Qingchen, WANG Xiangzeng, et al. Joint development and paleostress field in Mesozoic strata of the southeastern Ordos basin[J]. Acta Petrologica Sinica, 2013, 29(5):1774-1790.
    [21] BRADLEY D J, BRIAN D J, TIM C. Early jurassic extensional basin formation in the Daqingshan sement of the Yinshan belt, northern China block, inner Mongolia[J]. Tectonophysics, 2001, 339(3–4):239-258.
    [22] YAN D P, ZHOU M F, YAN D P. Origin and tectoinnic significance of mesozonic multi-layer overthrust system within the Yangtze block(south China)[J]. Tectonophysics, 2003, 361(3–4):239-254.
    [23] 董树文,张岳桥,陈宣华,等. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J]. 地球学报,2008,29(3):306-317.

    DONG Shuwen, ZHANG Yueqiao, CHEN Xuanhua, et al. The formation and deformational characteristics of east Asia multi-direction convergent tectonic systemin late Jurassic[J]. Acta Geoscientica Sinica, 2008, 29(3):306-317.
    [24] 张海锋,冯毅,王文升,等. 鄂尔多斯盆地东缘临兴区块煤系多目标储层构造裂缝定量预测[J]. 中国煤炭地质,2017,29(3):28-36.

    ZHANG Haifeng, FENG Yi, WANG Wensheng, et al. Coal measures multi-target reservoir structural fracture quantitative prediction in Linxing block, eastern Ordos basin[J]. Coal Geology of China, 2017, 29(3):28-36.
    [25] 周新桂,张林炎. 塔巴庙气田上古生界致密储层裂缝系统基本特征及其在天然气成藏中的作用[J]. 地球学报,2006,27(4):323-328.

    ZHOU Xingui, ZHANG Linyan. Basic characteristics of natural fracture systems in the upper paleozoic tight sand seservoirs in Tabamiao area, north Ordos basin and its role in the process of gas reservoir formation[J]. Acta Geophysica Sinica, 2006, 27(4):323-328.
    [26] 万永平,李园园,梁晓. 基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例[J]. 地质与勘探,2010,46(4):711-715.

    WAN Yongping, LI Yuanyuan, LIANG Xiao. Fractures of reservoirs in ferred from fluidinclu-sions: a case study of the upper Paleozoic of Northern shaanxi slope[J]. Geology and Exploration, 2010, 46(4):711-715.
    [27] 万永平,王根厚,归榕,等. 陕北斜坡上古生界构造裂缝及其天然气成藏意义[J]. 吉林大学学报(地球科学版),2013,43(1):28-38.

    WAN Yongping, WANG Genhou, GUI Rong, et al. Fractures of the upper Paleozoic in northern Shaanxi slope and its natural gas accumulation significance[J]. Journal and Jilin University (Earth Sciebce Edition), 2013, 43(1):28-38.
    [28] DING Wenlong, ZHU Dingwei, CAI Junjie, et al. Analysis of the developmental characteristics and major regulating factors of fractures in marine–continental transitional shale-gas reservoirs: A case study of the Carboniferous–Permian strata in the southeastern Ordos basin, central China[J]. Marine and Petroleum geology, 2013, 45:121-133.
    [29] 万永平,李海龙,李云,等. 鄂尔多斯盆地东部晚侏罗世-早白垩世应力场[J]. 地球科学,2017,42(4):549-558.

    WAN Yongping, LI Hailong, LI Yun, et al. The field stress between late Jurassic and early cretaceeous in the eastern Ordos basin[J]. Earth Science, 2017, 42(4):549-558.
    [30] 李家学,黄进军,罗平亚,等. 裂缝地层随钻刚性颗粒封堵机理与估算模型[J]. 石油学报,2011,32(3):509-513.

    LI Jiaxue, HUANG Jinjun, LUO Pingya, et al. Plugging mechanism and estimation models of rigid particlces while drilling in fracture formations[J]. Acta Petrolei Sinica, 2011, 32(3):509-513.
    [31] 鲜保安, 张义, 孙粉锦, 等. 煤层气裂缝性漏失井新型堵漏技术研究[J]. 天然气工业, 2010, 4(4): 16-20.

    XIAN Baoan, ZHANG Yi, SUN Fenjin, et al. A new Lost-circulation technology for fractured leaker of coalbed methane[J]. Natural Gas Technology, 2010, 4(4):16-20.
    [32] 周明. 处理井漏的十种方法和十项工艺[J]. 石油钻采工艺,1992,15(3):29-34.

    ZHOU Ming. Ten methods and ten processes for dealing with well leakage[J]. Oil Drilling and Production Process, 1992, 15(3):29-34.
    [33] 刘伟,雷万能. 井漏的成因及处理[J]. 中国西部科技,2008,7(8):41-42.

    LIU Wei, LEI Wanneng. The cause and treatment of well leakage[J]. Science and Technology of Western China, 2008, 7(8):41-42.
    [34] 王业众,康毅力,游利军,等. 裂缝性储层漏失机理及控制技术进展[J]. 钻井液与完井液,2007,24(4):74-77.

    WANG Yezhong, KANG Yili, YOU Lijun, et al. Progresses in mechanism study and control: mud losses to fractured reservoirs[J]. Drilling Fluid & Completion Fluid, 2007, 24(4):74-77.
    [35] 薛玉志,刘振东,唐代绪,等. 裂缝性地层堵漏配方及规律性研究[J]. 钻井液与完井液,2009,26(6):28-30.

    XUE Yuzhi, LIU Zhendong, TANG Daixu, et al. Study on the formulation of lost circulation control fluid and the laws of lost circulation control for fractured formations[J]. Drilling Fluid & Completion Fluid, 2009, 26(6):28-30.
    [36] 王多金,张坤,黄平,等. 快捷堵漏剂的研制及应用[J]. 天然气工业,2008,28(11):74-76.

    WANG Duojin, ZHANG Kun, HUANG Ping, et al. Developmen and application of quick plugging additive[J]. Natural Gas Industry, 2008, 28(11):74-76.
    [37] 刘金华,王治法,常连玉,等. 复合堵漏剂DL-1封堵裂缝的室内研究[J]. 钻井液与完井液,2018,25(1):50-52.

    WANG Jinhua, WANG Zhifa, CHANG Lianyu, et al. Sealing crack laboratory study of the compound plugging agent DL-1[J]. Drilling Fluid & Completion Fluid, 2018, 25(1):50-52.
    [38] 许成元,张敬逸,康毅力,等. 裂缝封堵层结构形成与演化机制[J]. 石油勘探与开发,2021,48(1):1-9.

    XU Chengyuan, ZHANG Jingyi, KANG Yili, et al. Structural formation and evolution mechanisms of fracture plugging zone[J]. Petroleum exploration and development, 2021, 48(1):1-9.
    [39] SAVARI S, WHITFILL D L, JAMISON D E, et al. A method to evaluate lost circulation materails-investigation ofeffective wellbore strengthening applications[R]. SPE 167997, 2014.
    [40] 王珂,张惠良,张荣虎,等. 塔里木盆地克深2气田储层构造裂缝多方法综合评价[J]. 石油学报,2015,36(6):673-687.

    WANG Ke, ZHANG Huiliang, ZHANG Ronghu, et al. Comprehensive assessment of reservoir structural fracture with multiple methods in Keshen-2 gas field,Tarim basin[J]. Acta Petrolei Sinica, 2015, 36(6):673-687.
  • 加载中
图(3) / 表(8)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  243
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-11
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回