Research on Class Structural Environmentally Friendly Emulsifiers for Oil-based Drilling Fluids
-
摘要: 采用含有环保脂酯类衍生物环氧脂肪酸酯为原材料与多胺反应形成具有双子表面活性剂结构的主乳化剂,再以主乳化剂为原材料,通过部分磺化形成具有类似结构的油基钻井液用多元类结构环保乳化剂。通过红外与质谱表征确定了乳化剂分子结构,抗温能够达到180℃,破乳电压达到900 V以上,乳化率超过90%。能够适应低油水比油基钻井液环境,适应不同基础油配制的钻井液体系。适应不同密度钻井液体系。具有优异的生物可降解能力。建立了一种乳滴微观形貌的评价方法来判断乳化剂形成乳滴的稳定性,确定了乳化剂加量高的条件下可以有效改善油包水乳滴的均匀性与高温稳定性。Abstract: Using environmentally friendly ester derivatives such as epoxy fatty acid esters as raw materials, react with polyamines to form a main emulsifier with a Gemini surfactant structure. Then, using the main emulsifier as raw material, partially sulfonate it to form a multi class environmentally friendly emulsifier with a similar structure for oil-based drilling fluids. The molecular structure of the emulsifier was determined through infrared and mass spectrometry characterization, with a temperature resistance of up to 180℃, a demulsification voltage of over 900V, and an emulsification rate of over 90%. Capable of adapting to low oil-water ratio oil-based drilling fluid environments and drilling fluid systems formulated with different base oils. Adapt to drilling fluid systems with different densities. Has excellent biodegradability. A method for evaluating the microstructure of emulsion droplets was established to determine the stability of emulsion droplet formation, and it was determined that high emulsifier dosage can effectively improve the uniformity and high-temperature stability of oil in water emulsion droplets.
-
Key words:
- Oil based drilling fluid /
- Emulsifier /
- Fatty acid esters /
- class structure
-
表 1 不同结构的复合乳化剂乳化效果对比
序号 乳化剂 特征结构 乳化率/% 破乳电压/V 1 多元类结构
环保乳化剂二乙烯三胺 97 970 2 TEFN 三乙烯四胺 93 627 3 FEFN 四乙烯五胺 84 521 表 2 不同主辅乳化剂配比复合乳化剂形成钻井液老化前后乳化效果
主辅乳化剂摩尔比 老化条件 乳化率/% ES/V 4∶1 老化前 97 970 180℃、16 h 95 732 8∶1 老化前 98 682 180℃、16 h 86 422 1∶2 老化前 72 210 180℃、16 h 68 202 1∶0 老化前 98 473 180℃、16 h 82 301 0∶1 老化前 57 42 180℃、16 h 55 36 表 3 不同油水比下多元类结构环保乳化剂钻井液老化前后乳化效果
油水比 PV/mPa·s YP/Pa FLHTHP/mL ES/V 90︰10 33 3.5 2.6 1346 80︰20 38 8.5 2.2 985 70︰30 42 10.0 2.4 572 60︰40 45 11 2.8 513 表 4 不同密度下多元类结构环保乳化剂钻井液老化前后乳化效果
ρ/
g/cm3老化
条件PV/
mP·sYP/
PaES/
V沉降
系数1.5 老化前 28 4.5 615 180℃、24 h 22 3.0 521 0.506 1.8 老化前 38 8.5 985 180℃、24 h 33 5.0 624 0.510 2.0 老化前 42 10.5 1070 180℃、24 h 38 7.0 812 0.514 2.2 老化前 53 11 1254 / 180℃、24 h 48 9.0 723 0.518 表 5 复合乳化剂所形成酯类油基钻井液性能评价
钻井液 老化
条件PV/
mPa·sYP/
PaFLHTHP/
mLES/
V白油基 老化前 38 8.5 2.2 985 180℃、24 h 33 5.0 2.6 624 柴油基 老化前 36 6.0 2.4 654 180℃、24 h 42 4.0 3.0 521 液蜡基 老化前 44 10 1.8 925 180℃、24 h 46 6.5 2.2 712 合成酯 老化前 46 10.5 1.6 1127 180℃、24 h 42 7.0 2.0 810 -
[1] 谢涛, 张磊, 杜明亮, 等. 悬浮稳定关键材料及超高温长效稳定油基钻完井液[J]. 钻井液与完井液, 2024, 41(6): 728-735. doi: 10.12358/j.issn.1001-5620.2024.06.004XIE Tao, ZHANG Lei, DU Mingliang, et al. Key suspension materials and Ultra-High temperature long-term stable Oil-Based drilling and completion fluids[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 728-735. doi: 10.12358/j.issn.1001-5620.2024.06.004 [2] 孙金声, 杨景斌, 白英睿, 等. 深层超深层钻井液技术研究进展与展望[J]. 石油勘探与开发, 2024, 51(4): 889-898. doi: 10.11698/PED.20240128SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Research progress and development of deep and ultra-deep drilling fluid technology[J]. Petroleum Exploration and Development, 2024, 51(4): 889-898. doi: 10.11698/PED.20240128 [3] 褚奇, 穆国臣, 葛春梅, 等. 钻井液用无荧光柔性封堵剂的制备及性能[J]. 钻井液与完井液, 2025, 42(3): 290-295.CHU Qi, MU Guochen, GE Chunmei, et al. Preparation and properties of a drilling fluid non-fluorescent flexible plugging[J]. Drilling Fluid & Completion Fluid, 2025, 42(3): 290-295. [4] 邱心明. 具有多个亲水基团的油基钻井液用乳化剂研制与性能评价[D]. 北京: 中国石油大学(北京), 2018.QIU Xinming. The development and performance evaluation of Emulsifier for oil-based drilling fluid with multiple hydrophilic groups[D]. Beijing: China University of Petroleum(Beijing), 2018. [5] 陈安猛, 沈之芹, 高磊, 等. 可逆转油基钻井液用乳化剂的合成及性能研究[J]. 化学世界, 2015, 56(4): 240-244.CHEN Anmeng, SHEN Zhiqin, GAO Lei, et al. Synthesis and evaluation of the emulsifier for reversible oil based drilling fluid[J]. Chemical World, 2015, 56(4): 240-244. [6] 王中华. 国内油基钻井液研究与应用综述[J]. 中外能源, 2022, 27(8): 29-36.WANG Zhonghua. A review of oil-based drilling fluid research and application in China[J]. Sino-global Energy, 2022, 27(8): 29-36. [7] 王勇强, 王京光, 吴满祥. 一种复合型油基钻井液用乳化剂的研制[J]. 中国新技术新产品, 2016(13): 61-62.WANG Yongqiang, WANG Jingguang, WU Manxiang. Development of an emulsifier for composite oil-based drilling fluid[J]. New Technology & New Products of China, 2016(13): 61-62. [8] 郭晓轩, 王鉴, 郭明贤. 油包水钻井液抗高温乳化剂的优选[J]. 化学工程师, 2014, 28(12): 43-45,55. doi: 10.3863/j.issn.1674-5086.2000.03.020GUO Xiaoxuan, WANG Jian, GUO Mingxian. Optimization of emulsifier for high temperature resistance oil based drilling fluid[J]. Chemical Engineer, 2014, 28(12): 43-45,55. doi: 10.3863/j.issn.1674-5086.2000.03.020 [9] 韩秀贞, 韩子轩, 王显光. 油基钻井液低凝点主乳化剂的研究与应用[J]. 应用化工, 2025, 54(4): 867-870,876.HAN Xiuzhen, HAN Zixuan, WANG Xianguang. Research and application of low freezing point main emulsifier for oil-based drilling fluids[J]. Applied Chemical Industry, 2025, 54(4): 867-870,876. [10] 赵庆哲, 蓝强, 郑成胜. 油基钻井液用乳化剂的研究现状及发展趋势[J]. 山东化工, 2023, 52(7): 88-90.ZHAO Qingzhe, LAN Qiang, ZHENG Chengsheng. Research and development of emulsifiers for oil-based drilling fluids[J]. Shandong Chemical Industry, 2023, 52(7): 88-90. [11] 郭鹏. 国内外油基钻井液用乳化剂研究进展[J]. 内蒙古石油化工, 2017, 43(8): 5-8.GUO Peng. Research progress of emulsifier in oil-based drilling fluid in domestic and abroad[J]. Inner Mongolia Petrochemical Industry, 2017, 43(8): 5-8. [12] 刘雪婧, 刘刚, 王苏南, 等. 油基钻井液高温乳化剂的制备与性能评价[J]. 油田化学, 2022, 39(4): 571-576. doi: 10.19346/j.cnki.1000-4092.2022.04.001LIU Xuejing, LIU Gang, WANG Sunan, et al. Preparation and performance evaluation of emulsifier with high temperature resistance for oil-based drilling fluid[J]. Oilfield Chemistry, 2022, 39(4): 571-576. doi: 10.19346/j.cnki.1000-4092.2022.04.001 [13] 苏超, 李闯, 肖文惠, 等. 油基钻井液乳化剂的筛选及评价[J]. 当代化工研究, 2017, 46(7): 1378-1381. doi: 10.3969/j.issn.1671-0460.2017.07.028SU Chao, LI Chuang, XIAO Wenhui, et al. Selection and evaluation of emulsifier for oil-based drilling fluids[J]. Contemporary Chemical Industry, 2017, 46(7): 1378-1381. doi: 10.3969/j.issn.1671-0460.2017.07.028 [14] 杜坤. 油基钻井液新型高效乳化剂的研制与评价[J]. 钻井液与完井液, 2020, 37(5): 555-560. doi: 10.3969/j.issn.1001-5620.2020.05.003DU Kun. Development and evaluation of a new high efficiency emulsifier for oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 555-560. doi: 10.3969/j.issn.1001-5620.2020.05.003 [15] 郭重阳, 畅润田. 一种酰胺类沥青乳化剂的制备及性能研究[J]. 石油炼制与化工, 2019, 50(6): 85-89. doi: 10.3969/j.issn.1005-2399.2019.06.017GUO Chongyang, CHANG Runtian. Preparation and properties of an amide emulsifier[J]. Petroleum Processing and Petrochemicals, 2019, 50(6): 85-89. doi: 10.3969/j.issn.1005-2399.2019.06.017 [16] 何瑞兵, 耿铁, 刘雪婧, 等. 抗高温合成基钻井液用乳化剂研究及应用[J]. 当代化工研究, 2020(9): 1-3.HE Ruibing, GENG Tie, LIU Xuejing, et al. Research and application of emulsifier for high temperature resistant synthetic drilling fluid[J]. Modern Chemical Research, 2020(9): 1-3. [17] 魏久勇. 油基钻井液用超支化乳化剂的制备与评价[J]. 山东化工, 2024, 53(18): 4-8.WEI Jiuyong. Preparation and evaluation of hyperbranched emulsifiers for Oil-Based drilling fluids[J]. Shandong Chemical Industry, 2024, 53(18): 4-8. [18] 郭鹏. 油基钻井液用多点吸附低聚乳化剂的研制及性能评价[J]. 精细石油化工进展, 2022, 23(4): 11-15. doi: 10.3969/j.issn.1009-8348.2022.04.003GUO Peng. Development and performance evaluation of multi? adsorption point oligomeric emulsifiers for oil-based drilling fluids[J]. Advances in Fine Petrochemicals, 2022, 23(4): 11-15. doi: 10.3969/j.issn.1009-8348.2022.04.003 [19] 王其可, 李小林, 肖尧, 等. 复合乳化剂作用下抗温耐盐丁苯胶乳的制备及性能评价[J]. 钻井液与完井液, 2024, 41(1): 112-118.WANG Qike, LI Xiaolin, XIAO Yao, et al.Preparation of a high temperature- and salt-resistant styrene butadiene latex under the action of composite emulsifiers and the performance evaluation thereof[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 112-118. -
下载: