留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种物理凝胶压裂液的耐温耐剪切评价与机理分析

蒋其辉 杨向同 王永红 李会丽 宁坤

蒋其辉, 杨向同, 王永红, 李会丽, 宁坤. 一种物理凝胶压裂液的耐温耐剪切评价与机理分析[J]. 钻井液与完井液, 2020, 37(4): 526-531. doi: 10.3969/j.issn.1001-5620.2020.04.020
引用本文: 蒋其辉, 杨向同, 王永红, 李会丽, 宁坤. 一种物理凝胶压裂液的耐温耐剪切评价与机理分析[J]. 钻井液与完井液, 2020, 37(4): 526-531. doi: 10.3969/j.issn.1001-5620.2020.04.020
JANG Qihui, YANG Xiangtong, WANG Yonghong, LI Huili, Ning Kun. The Temperature-tolerance and Shear-resistance Mechanism of a Physical Gel Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(4): 526-531. doi: 10.3969/j.issn.1001-5620.2020.04.020
Citation: JANG Qihui, YANG Xiangtong, WANG Yonghong, LI Huili, Ning Kun. The Temperature-tolerance and Shear-resistance Mechanism of a Physical Gel Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(4): 526-531. doi: 10.3969/j.issn.1001-5620.2020.04.020

一种物理凝胶压裂液的耐温耐剪切评价与机理分析

doi: 10.3969/j.issn.1001-5620.2020.04.020
基金项目: 

中国石油集团工程技术研究院有限公司院所青年基金课题“中高温低伤害减摩压裂液的研制”(CPETQ201929)部分研究成果

详细信息
    作者简介:

    蒋其辉,1986年生,博士,主要从事油气藏增产改造工作液及关键技术领域研究。电话17701303893,E-mail:jiangqihuidri@cnpc.com.cn

  • 中图分类号: TE357.12

The Temperature-tolerance and Shear-resistance Mechanism of a Physical Gel Fracturing Fluid

  • 摘要: 研究了一种物理凝胶压裂液的耐温耐剪切机理,主要分为以下3个方面:使用透射电镜分析了溶液微观结构,解释了线性型高聚物(HPAM)和聚合物稠化剂(SMPT)在高剪切速率下的降解现象;通过测试耐温耐剪切实验前后样品的黏弹模量,对比分析了HPAM和SMPT耐温耐剪切降解的影响因素;通过测试物理凝胶0.6% HPAM+0.5% PHCA与0.6% SMPT+0.5% PHCA耐温耐剪切实验前后样品的黏弹模量与微观形貌,分析了物理凝胶耐温耐剪切降解的影响因素。实验结果显示,经过120℃,170 s-1的耐温耐剪切实验,物理凝胶0.6% HPAM+0.5% PHCA转变为黏性流体;相反,经过150℃的耐温耐剪切实验,物理凝胶0.6% SMPT+0.5% PHCA的弹性因子保持率为78.9%,说明该物理凝胶压裂液经受高温剪切可保持强弹性流体特征。阿伦尼乌斯方程η=A e(-Ea/RT活化能计算结果表明,PHCA可以降低SMPT溶液的活化能获得高稳定性流体,表明PHCA增强了SMPT溶液的结构稳定性。

     

  • [1] KAI PAHNKE, OZCAN ALTINTAS, FRIEDRICH G. SCHMIDT, et al. Entropic effects on the supramolecular self-assembly of macromolecules[J].ACS Macro Lett, 2015, 4(7):774-777.
    [2] BERNHARD V. K. J. SCHMIDT,MARTIN HETZER, HELMUT RITTER, et al. UV light and temperature responsive supramolecular ABA triblock copolymers via reversible cyclodextrin complexation[J]. Macromolecules, 2013, 46(3):1054-1065.
    [3] VALERIA CASTELLETTO, IAN W. HAMLEY, MA YINGHUA, et al. Microstructure and physical properties of a pH-responsive gel based on a novel biocompatible ABA-type triblock copolymer[J]. Langmuir, 2004, 20(10):4306-4309.
    [4] JIAN Fengshi, XING Haishen. Construction of supramolecular self-assemblies based on the biamphiphilic ionic liquid-β-Cyclodextrin system[J]. J. Phys. Chem. B 1997, 101, 8212-8220.
    [5] ALAN VANDERKOOY, MARK S. TAYLOR. Solutionphase self-assembly of complementary halogen bonding polymers[J]. J. Am. Chem. Soc, 2015, 137, 5080-5086.
    [6] 白炳莲, 李敏. 基于氢键的自组装超分子体系[J]. 化学通报, 2004, 67(2):124-131.

    BAI Binglian, LI Min. Recent progress of supramolecular by self-assembly via intermolecular hydrogen bonding[J]. Chemistry, 2004, 67(2):124-131.
    [7] 吕亚非. 氢键型超分子聚合物的合成、结构与应用[J]. 高分子通报, 2005, 32(3):100-108.

    LYU Yafei. Synthesis, structures and applications of hydrogen bonded supramolecular polymers[J].Polymer Bulletin, 2005, 32(3):100-108.
    [8] CYRIL VÉCHAMBRE, XAVIER CALLIES, CECILE FONTENEAU, et al. Microstructure and self-assembly of supramolecular polymers center-functionalized with strong stickers[J]. Macromolecules, 2015, 48(22):8232-8239.
    [9] TORK AMIR, BAZUIN C GERALDINE. Mixtures of tertiary amine-functionalized mesogens with poly(acrylic acid)[J].Macromolecules, 2001, 34(22):7699-7706.
    [10] CHENG Zhiyu, REN Biye, GAO Ming, et al. Ionic self-assembled redox-active polyelectrolyte-ferrocenyl surfactant complexes:Mesomorphous structure and electrochemical behavior[J]. Macromolecules, 2007, 40(21):7638-7643.
    [11] YANG Jiang, CUI Weixiang, GUAN Baoshan, et al. Supramolecular fluid of associative polymer and viscoelastic surfactant for hydraulic fracturing[J].SPE Prod & Oper, 22(1):121-127.
    [12] MA Yingxian, MA Leyao, GUO Jianchun, et al. 2019. A High Temperature and Salt Resistance Supramolecular Thickening System.[R].Paper presented at the SPE International Conference on Oilfield Chemistry held in Galveston, Texas, USA. SPE-193549-MS
    [13] 蒋其辉, 蒋官澄, 刘冲, 等. 超分子压裂液体系的研制及评价[J]. 钻井液与完井液, 2015, 32(5):73-78.

    JIANG Qihui, JIANG Guancheng, LIU Chong, et al. Development and evaluation of supramolecular fracturing fluid[J]. Drilling Fluid & Completion Fluid,2015,32(5):73-78.
    [14] JIANG Qihui, JIANG Guancheng,WANG Chunlei, et al. A new high-temperature shear-tolerant supramolecular viscoelastic fracturing fluid[R]. IADC/SPE Asia Pacific Drilling Technology Conference; Singapore, August, 22-24, 2016; Doi: 10.2118/180595-MS.
    [15] 蒋其辉, 蒋官澄, 卢拥军, 等. 一种高温耐剪切超分子缔合弱凝胶清洁压裂液体系[J]. 钻井液与完井液, 2016, 33(6):106-110.

    JIANG Qihui, JIANG Guancheng, LU Yongjun, et al. A high temperature shear-resistant association supramolecular polymer weak gel fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):106-110.
    [16] JIANG Qihui, JIANG Guancheng,WANG Chunlei, et al. The influence of fiber on the rheological properties, microstructure and suspension behavior of the supramolecular viscoelastic fracturing fluid[J]. Journal of Natural Gas Science and Engineering, 2016, 35(9), 1207-1215.
    [17] JIANG Guancheng, JIANG Qihui, SUN Yunlong, et al. A supramolecular-structure-associating weak gel of wormlike micelles of erucoylamidopropyl hydroxy sulfobetaine and hydrophobically modified polymers[J]. Energy Fuels, 2017, 31(5), 4780-4790.
    [18] HASSAN P A, CANDAU S J, KERN F, et al. Rheology of wormlike micelles with varying hydrophobicity of the counter ion[J].Langmuir, 1998, 14(21), 6025-6029.
  • 加载中
计量
  • 文章访问数:  471
  • HTML全文浏览量:  128
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回