留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低温低密度可固化隔离液的研制与性能评价

房恩楼 李浩然 张浩 陈小华 罗宇维 顾军

房恩楼, 李浩然, 张浩, 陈小华, 罗宇维, 顾军. 一种低温低密度可固化隔离液的研制与性能评价[J]. 钻井液与完井液, 2020, 37(1): 86-92. doi: 10.3969/j.issn.1001-5620.2020.01.014
引用本文: 房恩楼, 李浩然, 张浩, 陈小华, 罗宇维, 顾军. 一种低温低密度可固化隔离液的研制与性能评价[J]. 钻井液与完井液, 2020, 37(1): 86-92. doi: 10.3969/j.issn.1001-5620.2020.01.014
FANG Enlou, LI Haoran, ZHANG Hao, CHEN Xiaohua, LUO Yuwei, GU Jun. Development and Performance Evaluation of a Low Temperature Low Density Solidifiable Spacer Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 86-92. doi: 10.3969/j.issn.1001-5620.2020.01.014
Citation: FANG Enlou, LI Haoran, ZHANG Hao, CHEN Xiaohua, LUO Yuwei, GU Jun. Development and Performance Evaluation of a Low Temperature Low Density Solidifiable Spacer Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 86-92. doi: 10.3969/j.issn.1001-5620.2020.01.014

一种低温低密度可固化隔离液的研制与性能评价

doi: 10.3969/j.issn.1001-5620.2020.01.014
基金项目: 

国家自然科学基金资助项目(41972326、51774258);国家重大科技专项子课题(2017ZX05009003-003);中海油田服务股份有限公司科技项目(G1817A-A21G226)

详细信息
    作者简介:

    房恩楼,高级工程师,毕业于长江大学石油工程专业,现主要从事油田化学技术研究工作。电话 19902188276;E-amil:fangenl@cosl.com.cn

  • 中图分类号: TE256.6

Development and Performance Evaluation of a Low Temperature Low Density Solidifiable Spacer Fluid

  • 摘要: 为适应海上“零排放”的环境保护政策,最大限度减少环空自由套管长度,同时为了提高斜井(尤其大位移井段、水平井段)固井顶替效率,改善固井二界面封固质量,研制了一种低温低密度条件下可固化的隔离液LL-CSF。对其进行性能评价,结果表明:① LL-CSF与钻井液和水泥浆具有良好的相容性,满足固井作业对前置液的要求;② LL-CSF与钻井液和水泥浆的混合液固化体抗压强度达到1.6 MPa以上,且与钻井液的混合液固化体也具有一定的抗压强度;③温度为20℃和40℃时,LL-CSF有利于提高固井二界面抗剪切强度,且40℃下可提高约3倍,但温度超过60℃时则不利于固井二界面胶结;④随着温度和时间的增加,LL-CSF固化体抗压强度先增大后降低,但随着LL-CSF密度的增大,其固化体抗压强度总体呈增大趋势;⑤ LL-CSF固化体具有较好的耐久性和稳定性。LL-CSF固化机理初步认为先是矿渣中富钙相和富硅相分解,然后各种离子和化学键重组而形成相应的水化产物。LL-CSF具有成本低廉、现场实施简便,可满足海洋固井的特殊需求,即在低温(小于40℃)且水泥浆不返到地面而又需要隔离液固化充填的固井中具有一定的应用前景。

     

  • [1] 陈平.钻井与完井工程[M].北京:石油工业出版社, 2011:303. CHEN Ping. Drilling and well completion[M]. Beijing:Petroleum Industry Press, 2011:303.
    [2] 吴龙飞.可固化隔离液技术研究与应用[D].成都:西南石油大学, 2016. WU Longfei. Development and application of curable spacer fluids[D]. Chengdu:Southwest Petroleum University, 2016.
    [3] 马文英,张辉,田军,等.提高第二界面固井质量的钻井液与前置液研究[J].钻井液与完井液, 2003, 20(4):27-30.

    MA Wenying, ZHANG Hui, TIAN Jun, et al. Study on drilling fluid and perflush for improving cementing quality of the second contact surface[J]. Drilling Fluid&Completion Fluid, 2003, 20(4):27-30.
    [4] 张林海,郭小阳,李早元,等.一种提高注水泥质量的可固化工作液体系研究[J].西南石油大学学报(自然科学版), 2007, 29(1):85-88. ZHANG Linhai, GUO Xiaoyang, LI Zaoyuan, et al. One kind of working fluid system improving the quality of cement injection[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2007, 29(1):85-88.
    [5] KHALIFEH M, SAASEN A, VRALSTAD T, et al. Potential utilization of class C fly ash-based geopolymer in oil well cementing operations[J]. Cement&Concrete Composites, 2014, 53(10):10-17.
    [6] SWEATMAN R, NAHM J, LOEB D, et al. First hightemperature applications of anti-gas migration slag cement and settable oil-mud removal spacers in deep South Texas gas wells[J]. Proceedings of the International Astronomical Union, 1995, 5(6):1-16.
    [7] BENGE O G, WEBSTER W W. Evaluation of blast furnace slag slurries for oilfield application[R]. SPE 27449, 1994.
    [8] 简家成,刘峥,杨宏斌,等.地聚物胶凝材料制备及应用研究现状[J].矿产综合利用, 2014, 35(3):18-22.

    JIAN Jiacheng, LIU Zheng, YANG Hongbin, et al. Research on preparation and application status of geopolymers[J]. Multipurpose Utilization of Mineral Resources, 2014, 35(3):18-22.
    [9] 窦立岩,汪丽梅.地聚物改性研究进展[J].山东化工, 2017, 46(8):61-63.

    DOU Liyan, WANG Limei. Progress on geopolymer modification[J]. Shandong Chemical Industry, 2017, 46(8):61-63.
    [10] 顾军,秦文政. MTA方法固井二界面整体固化胶结实验[J].石油勘探与开发, 2010, 37(2):226-231.

    GU Jun, QIN Wenzheng. Experiments on integrated solidification and cementation of the cement-formation interface based on mud cake to agglomerated cake (MTA) method[J]. Petroleum Exploration and Development, 2010, 37(2):226-231.
    [11] 姚振亚.地质聚合物的体积稳定性与强度研究[D].郑州:郑州大学, 2009. YAO Zhenya. Study on volume stability and compressive strength of geopolymer[D]. Zhengzhou:Zhengzhou University, 2009.
    [12] 郑娟荣,姚振亚,刘丽娜.碱激发胶凝材料化学收缩或膨胀的试验研究[J].硅酸盐通报, 2009, 28(1):49-53.

    ZHENG Juanrong, YAO Zhenya, LIU Lina. Test investigation on the chemical shrinkage or expansion of alkali-activated cementing materials[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(1):49-53.
    [13] 彭志刚,何育荣,刘崇建,等.矿渣MTC固化体开裂的本质原因分析[J].天然气工业, 2005, 25(5):72-74.

    PENG Zhigang, HE Yurong, LIU Chongjian, et al. Basic causes analysis of cracking of MTC solidified body with cinder[J]. Natural Gas Industry, 2005, 25(5):72-74.
    [14] 刘璐.以矿渣为胶凝材料的低密度固井液体系及其性能改善研究[D].成都:西南石油大学, 2017. LIU Lu. Study on low density cementing fluid based slag and its performance improvement[D]. Chengdu:Southwest Petroleum University, 2017.
  • 加载中
计量
  • 文章访问数:  584
  • HTML全文浏览量:  187
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-22
  • 刊出日期:  2020-02-28

目录

    /

    返回文章
    返回