留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绒囊流体控制煤岩储层水力裂缝形态研究

聂帅帅 郑力会 孟尚志 魏攀峰 张贺 孙昊

聂帅帅, 郑力会, 孟尚志, 魏攀峰, 张贺, 孙昊. 绒囊流体控制煤岩储层水力裂缝形态研究[J]. 钻井液与完井液, 2019, 36(5): 639-645. doi: 10.3969/j.issn.1001-5620.2019.05.020
引用本文: 聂帅帅, 郑力会, 孟尚志, 魏攀峰, 张贺, 孙昊. 绒囊流体控制煤岩储层水力裂缝形态研究[J]. 钻井液与完井液, 2019, 36(5): 639-645. doi: 10.3969/j.issn.1001-5620.2019.05.020
NIE Shuaishuai, ZHENG Lihui, MENG Shangzhi, WEI Panfeng, ZHANG He, SUN Hao. Control the Crack Morphology of Hydraulic Fracture by Fuzzy-ball Fluid in Coal Seam[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 639-645. doi: 10.3969/j.issn.1001-5620.2019.05.020
Citation: NIE Shuaishuai, ZHENG Lihui, MENG Shangzhi, WEI Panfeng, ZHANG He, SUN Hao. Control the Crack Morphology of Hydraulic Fracture by Fuzzy-ball Fluid in Coal Seam[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 639-645. doi: 10.3969/j.issn.1001-5620.2019.05.020

绒囊流体控制煤岩储层水力裂缝形态研究

doi: 10.3969/j.issn.1001-5620.2019.05.020
基金项目: 

国家科技重大专项"三气"合采钻完井技术与储层保护"(2016ZX05066002)

详细信息
    作者简介:

    聂帅帅,硕士,1992年生;主要研究储层伤害治理方法和关键技术。电话(010)89731026;E-mail:lihuilab@lihuilab.com

  • 中图分类号: TE357.12

Control the Crack Morphology of Hydraulic Fracture by Fuzzy-ball Fluid in Coal Seam

  • 摘要: 煤岩储层水力裂缝易随割理和天然裂缝转向延伸,致使水力裂缝形态不规则且横向延伸较短。欲采用绒囊流体作为压裂液,在压裂过程中暂堵割理和天然裂缝,使压力向垂直于井筒的方向传递,从而形成规则长缝。室内测试绒囊压裂流体暂堵煤岩柱塞剖缝承压能力18 MPa,能够阻止裂缝向割理和天然裂缝方向偏转;绒囊压裂流体伤害煤基质渗透率恢复值86%,满足压后产气要求;φ0.9 mm陶粒在绒囊压裂流体中的沉降速率0.003 cm/s,满足携砂要求。X井压裂现场配制绒囊压裂流体520 m3,采用井筒加砂分隔的方式分层压裂山西组和太原组煤层。绒囊携砂液泵注过程中,施工压力稳定在14.64~15.99 MPa之间,表明水力裂缝延伸过程中未出现堵塞和转向。压后模拟发现,太原组缝长155.7 m,缝高41.3 m;山西组缝长163.9 m,缝高47.5 m。因此,绒囊流体能够作为压裂液形成规则长缝,解决了煤岩储层造缝不理想的难题。

     

  • [1] DANESHY A A. Hydraulic fracture propagation in the presence of planes of weakness[R]. presented at the SPEEuropean Spring Meeting, Amsterdam,SPE 4852,1974.
    [2] 刘世奇,桑树勋,李梦溪,等. 樊庄区块煤层气井产能差异的关键地质影响因素及其控制机理[J]. 煤炭学报,2013,38(2):277-283.

    LIU Shiqi,SANG Shuxun,LI Mengxi,et al. Key geologic factors and control mechanisms of water production and gas production divergences between CBM wells in Fan zhuang block[J]. Journal of China Coal Society,2013,38(2):277-283.
    [3] 张义,鲜保安,孙粉锦,等. 煤层气低产井低产原因及增产改造技术[J]. 天然气工业,2010,30(6):55-59.

    ZHANG Yi,XIAN Baoan,SUN Fenjing,et al. The Reasons of low yield wells in coalbed methane wells and the technology of increasing production[J]. Natural Gas Industry,2010,30(6):55-59.
    [4] 陈尚斌,朱炎铭,刘通义,等. 清洁压裂液对煤层气吸附性能的影响[J]. 煤炭学报,2009,34(1):89-93.

    CHEN Shangbin,ZHU Yanming,LIU Tongyi,et al. Impact of the clear fracturing fluid on the adsorption properties of CBM[J]. Journal of China Coal Society, 2009,34(1):89-93.
    [5] 郑力会,魏攀峰,楼宣庆,等. 氯化钾溶液浓度影响页岩气储层解吸能力室内实验[J]. 钻井液与完井液, 2016,33(3):117-122.

    ZHENG Lihui,WEI Panfeng,LOU Xuanqing,et al. Laboratory experiments on the effect of KCl concentration on desorption capacity of reservoir rocks[J]. Drilling Fluid & Completion Fluid,2016,33(3):117-122.
    [6] WARPINSKI N R,LORENZ J C,BRANAGAN P T, et al. Examination of a cored hydraulic fracture in a deep gas well[J]. SPE Production & Facilities,1993,8(8):150-158.
    [7] BEUGELSDIJK L J L,PATER C J D,SATO K. Experimental hydraulic fracture propagation in a multifractured medium[R]. SPE Asia Pacific Conference on Integrated Modelling for Asset Management,SPE 59419,2000.
    [8] 程远方,徐太双,吴百烈,等. 煤岩水力压裂裂缝形态实验研究[J]. 天然气地球科学,2013,24(1):134-137.

    CHENG Yuanfang,XU Taishuang,WU Bailie,et al. Experimental study on the hydraulic fractures' morphology of coal bed[J]. Natural Gas Geoscience,2013,24(1):134-137.
    [9] 王春鹏,张士诚,王雷,等. 煤层气井水力压裂裂缝导流能力实验评价田[J]. 中国煤层气,2006,3(1):17-20.

    WANG Chunpeng,ZHANG Shicheng,WANG Lei,et al. Experimental evaluation on conductivity of hydraulic fracturing in CBM wells[J].China Coalbed Methane, 2006,3(1):17-20.
    [10] 郝丽,段宝玉. 煤层中水对煤层气产量的影响[J]. 中国煤层气,2012(4):32-34. HAO Li,DUAN Baoyu. The impact of water in coal seam on CBM yield[J].China Coalbed Methane,2012

    (4):32-34.
    [11] 单学军,张士诚,李安启,等. 煤层气井压裂裂缝扩展规律分析[J]. 天然气工业,2005,25(1):130-132.

    SHAN Xuejun,ZHANG Shicheng,LI Anqi,et al. Analyzing the fractureextended law of liydraulic fracturing in coalbed gas wells[J]. Natural Gas lndustry, 2005,25(1):130-132.
    [12] 任宜伟,楼宣庆,段宝江,等. 工程参数对L区煤层气直井产量影响的定量研究[J]. 石油钻采工艺,2016, 38(4):487-493.

    REN Yiwei,LOU Xuanqing,DUAN Baojiang,et al. Quantitative analysis onthe effect of engineering paramters on production rateof CBM vertical well in Block L[J]. Oil Drilling& Production Technology,2016,38(4):487-493.
    [13] JEFFREY R G,Hinkel J J, NIMERICK K H, et al. Hydraulic fracturing to enhance production of methane from coal seams[C]. Proceedings International Coalbed Methane Symposium,1989:385-394.
    [14] 杨宇,林璠,曹煌,等. 煤层气直井间接压裂施工的先导地质分析[J]. 煤田地质与勘探,2016,44(3):46-50.

    YANG Yu,LIN Fan,CAO Huang,et al. Pilot geological analysis of indirectfracturing in vertical CBM well[J].Coal Geology & Exploration,2016,44(3):46-50.
    [15] 边利恒,熊先钺,王炜彬. 低渗透软煤储层压裂改造研究[J]. 煤炭技术,2017,36(2):185-186.

    BIAN Liheng,XIONG Xianyue,WANG Weibin. Research on stimulation of low permeability soft coal formation[J].Coal Technology,2017,36(2):185-186.
    [16] CRAMER D D. The unique aspects of fracturing Western U.S. coalbeds[J]. Journal of Petroleum Technology, 1992,42(10):351-361.
    [17] 贾建称,张泓,贾茜,等.煤储层割理系统研究:现状与展望[J]. 天然气地球科学,2015,26(9):1621-1628.

    JIA Jiancheng,ZHANG Hong,JIA Qian,et al. Status and prospect:studynnthe cleat system in coal reservoir[J].Natural Gas Geoscienceal,2015,26(9):1621-1628.
    [18] 郑力会,张明伟. 封堵技术基础理论回顾与展望[J]. 石油钻采工艺,2012,34(5):1-9.

    ZHENG Lihui,ZHANG Mingwei. Review of basic theory for lost circulation control[J].Oil Drilling & Production Technology,2012,34(5):1-9.
    [19] 郑力会,孔令琛,曹园,等.绒囊工作液防漏堵漏机理[J]. 科学通报,2010,55(15):1520-1528.

    ZHENG Lihui,KONG Lingchen,CAO Yuan,et al. The Mechanism for fuzzy-ball working fluids for controlling & killing lost circulation[J]. Chinese Sci Bull, 2010,55(15):1520-1528.
    [20] 郑力会,陈必武,张峥,等. 煤层气绒囊钻井流体的防塌机理[J]. 天然气工业,2016,36(2):72-77.

    ZHENG Lihui,CHEN Biwu,ZHANG Zheng,et al. Anti-collapse mechanism of the CBM fuzzy-ball drilling fluid[J]. Natural Gas Industry,2016,36(2):72-77.
    [21] 孟尚志, 张志珩,赵军. 绒囊钻井液在煤层气水平井稳定井壁技术的应用[J]. 钻井液与完井液,2014,31(3):35-38.

    MENG Shangzhi,ZHANG Zhihang,ZHAO Jun. Application of chorionic drilling fluid in stabilizing borehole wall in horizontal coal bedmethane drilling[J]. Drilling Fluid & Completion Fluid,2014,31(3):35-38.
    [22] 温哲豪,薛亚斐,白建文,等.GX-3井绒囊流体暂堵重复酸化技术[J]. 石油钻采工艺,2015,37(5):85-88.

    WEN Zhehao,XUE Yafei,BAI Jianwen,et al. Technology of re-acidizing Well GX-3 by temporary plugging with fuzzy-ball fluid[J]. Oil Drilling & Production Technology,2015,37(5):85-88.
    [23] 郑力会,翁定为.绒囊暂堵液原缝无损重复压裂技术[J]. 钻井液与完井液,2015,32(3):76-78.

    ZHENG Lihui,WONG Dingwei. Study on repeating fracturing while causing no damage to original fractures[J]. Drilling Fluid & Completion Fluid,2015, 32(3):76-78.
    [24] 郑力会,崔金榜,聂帅帅,等. 郑X井非产水煤层绒囊暂堵流体重复压裂转向试验[J]. 钻井液与完井液, 2016,33(5):103-108.

    ZHENG Lihui,CUI Jinbang,NIE Shuaishuai,et al. Field test on alter-orientation re-fracturing in non water coal bed of Zhengdong 6X well by Fuzzy-ball fluid[J]. Drilling Fluid & Completion Fluid,2016,33(5):103-108.
    [25] 聂帅帅,郑力会,陈必武,等. 郑3X煤层气井绒囊流体重复压裂控水增产试验[J]. 石油钻采工艺,2017, 39(3):362-369.

    NIE Shuaishuai,ZHENG Lihui,CHEN Biwu,et al. Field test on water plugging and refracturing to increase production in coalbed of Zheng 3X well by fuzzy-ball fluid[J]. Oil Drilling & Production Technology,2017, 39(3):362-369.
    [26] 朱立国,黄波,陈维余,等. 适于高矿化度地层水地层的稳油控水绒囊流体[J]. 石油钻采工艺,2016,38(2):216-220.

    ZHU Liguo,HUANG Bo,CHEN Weiyu,et al. Fuzzyball fluid for stabilizing oil production and water control in formations with high-salinity water[J]. Oil Drilling & Production Technology,2016,38(2):216-220.
    [27] 郭本广,郑力会,孟尚志,等. 绒囊工作液在煤层气勘探开发中的应用前景[J]. 资源与产业,2011,13(4):117-121.

    GUO Benguang,ZHENG Lihui,MENG Shangzhi,et al. Application prospect of Fuzzy-ball working fluid in coalbed methane exploration[J].Resources & Industries, 2011,13(4):117-121.
    [28] 李达, 王乐, 衣德强, 等. 苏里格致密砂岩压裂中转向剂用量与转向角的关系[J]. 钻井液与完井液, 2018, 35(4):108-113.

    LI Da;WANG Le;YI Deqiang, et al.Functional Relationship between Amount of Diverting Agent and Diverting Angle in Fracturing Tight Sandstones in Sulige Gas Field[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):108-113.
    [29] 郑力会,魏攀峰,张峥,等. 联探并采:非常规油气资源勘探开发持续发展自我救赎之路[J]. 天然气工业, 2017(5):126-140. ZHENG Lihui,WEI Panfeng,ZHANG Zheng,et al. Joint exploration and development:A self-salvation road to sustainable development of unconventional oil and gas resources[J]. Natural Gas Industry,2017

    (5):126-140.
    [30] 肖兵,张高群,曾铮,等. 高温高密度压裂液在大古2井的应用[J]. 钻井液与完井液,2012(6):68-70. XIAO Bing,ZHANG Gaoqun,ZENG Zheng,et al. Application on high temperature and high density fracturing fluid in well Dagu 2

    [J]. Drilling Fluid & Completion Fluid,2012,(6):68-70.
    [31] 刘海龙,吴淑红. 煤层气井压裂效果评价及压裂施工工程因素分析[J]. 非常规油气,2014,1(3):64-71.

    LIU Hailong,WU Shuhong. Evaluation of coal bed methane wells fracturing effect and analysis of fracturing project influencing factors[J].Unconventonal Oil & Gas, 2014,1(3):64-71.
    [32] SY/T 5289-2016油、气、水井压裂设计与施工及效果评估方法[S]. SY/T 5289-2016 Fracturing design, treatment and postfracturing effect evaluation methods of oil, gas and injection wells[S].
    [33] 李勇明,赵金洲,郭建春. 天然裂缝性储层压裂液滤失的数值模拟研究[J]. 钻井液与完井液,2004,21(1):20-22.

    LI Yongming,ZHAO Jinzhou,GUO Jianchun. Numerical simulation of fracturing-luid filtrate loss in natural fracture-type reservoir[J]. Drilling Fluid & Completion Fluid,2004,21(1):20-22.
    [34] 张昕, 余航, 龙珂, 等. 裂缝高度控制技术在FracproPT施工优化中的应用[J]. 油气地球物理, 2011,9(4):51-54.

    ZHANG Xin,YU Hang,LONG Ke,et al. Application of fracture height control technologyin Fracpro PT construction optimization[J]. Petroleum Geophysics, 2011,9(4):51-54.
  • 加载中
计量
  • 文章访问数:  681
  • HTML全文浏览量:  208
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-20
  • 刊出日期:  2019-10-30

目录

    /

    返回文章
    返回