Turn off MathJax
Article Contents
ZHOU Guowei, ZHANG Xin, YAN Weijun, et al.A new high-temperature tackifier for solid-free drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(0):1-11
Citation: ZHOU Guowei, ZHANG Xin, YAN Weijun, et al.A new high-temperature tackifier for solid-free drilling fluids[J]. Drilling Fluid & Completion Fluid,2025, 42(0):1-11

A New High-temperature Tackifier for Solid-free Drilling Fluids

  • Accepted Date: 2025-06-12
  • Available Online: 2025-08-01
  • The Ordovician buried-hill reservoir in Liaohe Oilfield exhibits a challenging high-temperature (200℃ at reservoir center) and low-pressure (pressure coefficient 1.01~1.06) environment characteristic of typical high-temperature, low-pressure oil/gas reservoirs. To achieve formation protection, a solids-free water based drilling fluid was prioritized, with tackifier selection being critical. Through molecular structure optimization, a novel high-temperature/salt-resistant tackifier was developed using four monomers: N-vinylpyrrolidone (NVP), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), N'N-diethylacrylamide (DEAA), and 1-(3-sulfopropyl)-2-vinylpyridinium hydroxide inner salt. The synthesis employed N'N-methylene bisacrylamide as crosslinker with potassium persulfate and sodium bisulfite as redox initiators. FTIR and TGA analysis confirmed successful polymerization, demonstrating superior thermal stability with 296.66℃ initial decomposition temperature and only 45.96% mass loss during degradation phase, outperforming commercial HE300. The fluid achieved remarkable rheological performance with 722 consistency coefficient (K) at 0.5% concentration. Laboratory evaluations verified exceptional thermal stability up to 220℃ and saturated salt tolerance. Field applications demonstrated excellent viscosity-enhancing performance and robust durability of this novel tackifier, providing vital technical support for buried-hill reservoir development and high-temperature formation drilling operations.

     

  • loading
  • [1]
    李中. 渤海深层探井钻井关键技术现状及展望[J]. 钻采工艺,2024,47(2):35-41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05

    LI Zhong. Challenges and technology trends prediction of deep exploration well drilling in bohai sea[J]. Drilling & Production Technology, 2024, 47(2):35-41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05
    [2]
    闫建丽, 李超, 马栋, 等. 渤海复杂潜山油藏动静态特征识别方法及应用[J]. 油气藏评价与开发,2024,14(2):308-316.

    YAN Jianli, LI Chao, MA Dong, et al. Dynamic and static feature identification method of complex buried hill reservoirs in Bohai and its application[J]. Reservoir Evaluation and Development, 2024, 14(2):308-316.
    [3]
    ZHANG X M, JIANG G C, XUAN Y, et al. Associating copolymer acrylamide/diallyldimethylammonium chloride/butyl acrylate/2-Acrylamido-2-methylpropanesulfonic acid as a tackifier in Clay-Free and Water-Based drilling fluids[J]. Energy & Fuels, 2017, 31(5):4655-4662.
    [4]
    GAO Y, WANG X B, CHENG Y, et al. Development and assessment of a Water-Based drilling fluid tackifier with salt and High-Temperature resistance[J]. Crystals, 2025, 15(1):82. doi: 10.3390/cryst15010082
    [5]
    ZHANG G H, FANG M Z, WANG W D, et al. Synthesis of high temperature resistant viscosifier for solid-free water-based drilling fluid[J]. Fresenius Environmental Bulletin, 2020, 29(8):6914-6921.
    [6]
    XIE B Q, TING L, ZHANG Y, et al. Rheological properties of bentonite-free water-based drilling fluids with novel polymer viscosifier[J]. Journal of Petroleum Science and Engineering, 2018, 164:302-310. doi: 10.1016/j.petrol.2018.01.074
    [7]
    倪天姿, 王昌军, 吴宇. 无固相水基钻井液用抗高温增粘提切剂的研究进展[J]. 应用化工,2023,52(4):1157-1163. doi: 10.3969/j.issn.1671-3206.2023.04.037

    NI Tianzi, WANG Changjun, WU Yu. Research progress of anti-high temperature viscosity raising and cutting agents for solid-free water-based drilling fluids[J]. Applied Chemical Industry, 2023, 52(4):1157-1163. doi: 10.3969/j.issn.1671-3206.2023.04.037
    [8]
    马海云, 吕双, 颜寒, 等. 页岩油钻井用环保型耐温抗盐增黏剂[J]. 油田化学,2025,42(2):191-197.

    MA Haiyun, LYU Shuang, YAN Han, et al. Environmentally friendly viscosity enhancer with temperature resistance and salt tolerance for shale oil drilling[J]. Oilfield Chemistry, 2025, 42(2):191-197.
    [9]
    王晓博, 程云, 马诚, 等. 耐盐抗高温水基钻井液增黏剂的合成与性能评价[J]. 应用化工,2024,53(9):2118-2122. doi: 10.3969/j.issn.1671-3206.2024.09.022

    WANG Xiaobo, CHENG Yun, MA Cheng, et al. Synthesis and performance evaluation of salt and high temperature resistant water-based drilling fluid viscosity enhancers[J]. Applied Chemical Industry, 2024, 53(9):2118-2122. doi: 10.3969/j.issn.1671-3206.2024.09.022
    [10]
    孙振峰, 杨超, 李杰, 等. 钻井液用高性能增黏剂的研制及性能评价[J]. 钻井液与完井液,2024,41(1):84-91. doi: 10.12358/j.issn.1001-5620.2024.01.009

    SUN Zhenfeng, YANG Chao, LI Jie, et al. Development and performance evaluation of a high performance drilling fluid viscosifier[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):84-91. doi: 10.12358/j.issn.1001-5620.2024.01.009
    [11]
    吕开河, 杨鹏, 李建成, 等. 抗高温无黏土相钻井液体系研究与性能评价[J]. 石油钻探技术,2012,40(5):30-34. doi: 10.3969/j.issn.1001-0890.2012.05.007

    LV Kaihe, YANG Peng, LI Jiancheng, et al. Research and evaluation of Clay-Free drilling fluids with high temperature resistance[J]. Petroleum Drilling Techniques, 2012, 40(5):30-34. doi: 10.3969/j.issn.1001-0890.2012.05.007
    [12]
    董振华. 抗高温抗盐聚合物增黏剂的研制与性能评价[J]. 油田化学,2021,38(1):29-33.

    DONG Zhenhua. Development and evaluation of temperature and salt resistant polymer viscosifier[J]. Oilfield Chemistry, 2021, 38(1):29-33.
    [13]
    周静, 张青青, 蒋劲国, 等. FTIR光谱快速鉴别刺梨黄酮的研究[J]. 光谱学与光谱分析,2021,41(10):3045-3050.

    ZHOU Jing, ZHANG Qingqing, JIANG Jinguo, et al. Study on the rapid identification of flavonoids in chestnut rose (Rosa roxburghii tratt) by FTIR[J]. Spectroscopy and Spectral Analysis, 2021, 41(10):3045-3050.
    [14]
    ZHENG C S, LI J T, XUE S, et al. Experimental study on changes in components and pore characteristics of acidified coal treated by organic solvents[J]. Fuel, 2023, 353:129215. doi: 10.1016/j.fuel.2023.129215
    [15]
    ZHOU C X, QI S X, ZHU P, et al. The methylene infrared vibration and dielectric behavior monitored by amide group arrangement for long chain polyamides[J]. Polymer, 2020, 190:122231. doi: 10.1016/j.polymer.2020.122231
    [16]
    ZHOU Y, CHEN J D, ZHANG K, et al. Study on aging performance of modified asphalt binders based on characteristic peaks and molecular weights[J]. Construction and Building Materials, 2019, 225:1077-1085. doi: 10.1016/j.conbuildmat.2019.07.196
    [17]
    ZHAO Y, FAN Q L, LIU Y H, et al. Preparation and application of Amino-Terminated hyperbranched magnetic composites in High-Turbidity water treatment[J]. Molecules, 2023, 28(19):6787. doi: 10.3390/molecules28196787
    [18]
    ZHOU X F, BAI L F, LIU X H, et al. Preparation of halogen-free flame retardant polyacrylonitrile via hydrolyzing and grafting with diphenylphosphinyl chloride[J]. Journal of Macromolecular Science Part A, 2019, 56(12):1097-1103. doi: 10.1080/10601325.2019.1654392
    [19]
    CHEN L, PU Z J, LONG Y, et al. Synthesis and properties of sulfonated poly(arylene ether nitrile)copolymers containing carboxyl groups for Proton-Exchange membrane materials[J]. Journal of Applied Polymer Science, 2014, 131(9):40213. doi: 10.1002/app.40213
    [20]
    ZHENG J, LIU M, ZHANG M X, et al. Effects of pectin on the pasting, rheological, and textural properties of lotus root starch[J]. Starch - Starke, 2019, 71(3/4):1700347.
    [21]
    ZHOU Y J, HE Y F, LI Z J, et al. Hole cleaning performance of V-Shaped hole cleaning device in horizontal well drilling: numerical modeling and experiments[J]. Applied Sciences, 2022, 12(10):5141. doi: 10.3390/app12105141
    [22]
    DAS S, BASU T, MAJUMDAR S. Electrostatic-Dominated conformational fluctuations and transition states of phase separation in Charge-Balanced protein polymer[J]. ACS Macro Letters, 2024, 13(1):34-39. doi: 10.1021/acsmacrolett.3c00625
    [23]
    TANG B, HU J, ZHAO Z J, et al. Puncture-resistant hydrogels with high mechanical performance achieved by the supersaturated salt[J]. Materials Horizons, 2025, 12(12):4229-4237. doi: 10.1039/D4MH01862A
    [24]
    ZUÑIGA A, DEBBAUDT A, ALBERTENGO L, et al. Synthesis and characterization of N-propyl-N-methylene phosphonic chitosan derivative[J]. Carbohydrate Polymers, 2010, 79(2):475-480. doi: 10.1016/j.carbpol.2009.08.011
    [25]
    ZULFIQAR S, SARWAR M I. Soluble aromatic polyamide bearing sulfone linkages: synthesis and characterization[J]. High Performance Polymers, 2009, 21(1):3-15. doi: 10.1177/0954008308089114
    [26]
    TOLSTOGUZOV V. Thermodynamic considerations of starch functionality in foods[J]. Carbohydrate Polymers, 2003, 51(1):99-111. doi: 10.1016/S0144-8617(02)00171-6
    [27]
    ANTON K, ROBERT P, QIANG W, et al. High-tech functional polymers designed for applications in organicelectronics[J]. Polymer Degradation and Stability, 2017, 145:150-156. doi: 10.1016/j.polymdegradstab.2017.06.009
    [28]
    HOLLINGSWORTH K G, JOHNS M L. Rheo-nuclear magnetic resonance of emulsion systems[J]. Journal of Rheology, 2004, 48(4):787-803. doi: 10.1122/1.1753277
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(8)

    Article Metrics

    Article views (62) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return