Turn off MathJax
Article Contents
LIU Xilong, SUN Qian, ZHANG Guobiao, et al.Flow characteristics of dual-increasing stimulation slurry in unconsolidated silty sandstone[J]. Drilling Fluid & Completion Fluid,2025, 42(0):1-12
Citation: LIU Xilong, SUN Qian, ZHANG Guobiao, et al.Flow characteristics of dual-increasing stimulation slurry in unconsolidated silty sandstone[J]. Drilling Fluid & Completion Fluid,2025, 42(0):1-12

Flow Characteristics of Dual-Increasing Stimulation Slurry in Unconsolidated Silty Sandstone

  • Received Date: 2025-06-25
  • Accepted Date: 2025-06-10
  • Rev Recd Date: 2025-07-21
  • Available Online: 2025-08-05
  • The dual-increasing stimulation slurry is a novel stimulation fluid developed for weakly cemented reservoirs, such as submarine methane-hydrate-bearing silty sandstones. After injection into the formation, it consolidates to form porous-media slurry veins that enhance permeability. This study employed a slurry fracture flow visualization apparatus to investigate the flow characteristics of the slurry within muddy silty sediments. The experiments revealed the influence of geological parameters, slurry formulation, and operational parameters on slurry flow, fluid loss, and slurry-vein porosity. The results indicate that the slurry flows uniformly and exhibits a convex fracture flow profile, flowing to the end of main fracture and branch fracture, effectively filling fractures. Lower fluid loss increases the proportion of medium-to-large pores within the slurry veins. Adjusting the slurry formulation can reduce fluid loss in formations of varying permeability, whereas a high injection rate expands the fluid loss zone. The effective porosity ranges from 50% to 60% with a uniformly distributed pore space, forming a structure dominated by large pores (pore diameter > 50 nm) and densely distributed micro- to mesopores (pore diameter < 50 nm). This pore network can serve as high-conductivity channels for gas and water migration, while the dense distribution of small and medium pores is conducive to sand control.

     

  • loading
  • [1]
    谭富荣, 耿庆明, 刘世明, 等. 天然气水合物含油气系统研究现状与展望[J]. 特种油气藏,2021,28(1):1-9. doi: 10.3969/j.issn.1006-6535.2021.01.001

    TAN Furong, GENG Qingming, LIU Shiming, et al. Research status and prospect of natural gas hydrate petroleum system[J]. Special Oil & Gas Reservoirs, 2021, 28(1):1-9. doi: 10.3969/j.issn.1006-6535.2021.01.001
    [2]
    SLOAN Jr E D, KOH C A, KOH C A. Clathrate hydrates of natural gases[M]. 3ird Edition Boca Raton: CRC Press, 2007.
    [3]
    CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061
    [4]
    李宁, 孙文杰, 李心童, 等. 天然气水合物饱和度测井解释模型及方程[J]. 石油勘探与开发,2022,49(6):1073-1079. doi: 10.11698/PED.20220449

    LI Ning, SUN Wenjie, LI Xintong, et al. Gas hydrate saturation model and equation for logging interpretation[J]. Petroleum Exploration and Development, 2022, 49(6):1073-1079. doi: 10.11698/PED.20220449
    [5]
    YAN C A, CHENG Y F, LI M L, et al. Mechanical experiments and constitutive model of natural gas hydrate reservoirs[J]. International Journal of Hydrogen Energy, 2017, 42(31):19810-19818. doi: 10.1016/j.ijhydene.2017.06.135
    [6]
    庞雄奇, 贾承造, 徐帜, 等. 全油气系统理论在全球天然气水合物资源评价中的应用[J]. 石油勘探与开发,2025,52(2):267-278. doi: 10.11698/PED.20240055

    PANG Xiongqi, JIA Chengzao, XU Zhi, et al. Application of the whole petroleum system in the evaluation of the global natural gas hydrate resource[J]. Petroleum Exploration and Development, 2025, 52(2):267-278. doi: 10.11698/PED.20240055
    [7]
    邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575-587. doi: 10.11698/PED.2018.04.04

    ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4):575-587. doi: 10.11698/PED.2018.04.04
    [8]
    MORIDIS G J, SLOAN E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007, 48(6):1834-1849. doi: 10.1016/j.enconman.2007.01.023
    [9]
    BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4):1206-1215.
    [10]
    YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2):197-209. doi: 10.31035/cg2020043
    [11]
    WANG X C, SUN Y H, CHEN H K, et al. Experimental study on the depressurization of methane hydrate in the clayey silt sediments via hydraulic fracturing[J]. Energy & Fuels, 2023, 37(6):4377-4390.
    [12]
    YANG L, SHI F K, YANG J. Experimental studies on hydraulic fracturing in hydrate sediment[J]. Chemistry and Technology of Fuels and Oils, 2020, 56(1):107-114. doi: 10.1007/s10553-020-01116-8
    [13]
    马晓龙. 泥质粉砂型水合物储层水力压裂数值模拟及实验研究[D]. 长春: 吉林大学, 2021.

    MA Xiaolong. Numerical simulation and experimental study on hydraulic fracturing of clayey silt hydrate reservoir[D]. Changchun: Jilin University, 2021.
    [14]
    LIU J X, YU Y P, LI B, et al. Analysis of 3D hydraulic fracture morphology and fracture critical parameters in Hydrate-Bearing sediments in the South China sea using extended finite elements[J]. Energy & Fuels, 2024, 38(1):314-332.
    [15]
    LIU J X, YU Y P, MA X L, et al. Analysis of near-well hydraulic fracture propagation behavior in inhomogeneous deep-sea hydrate-bearing-sediments[J]. Geoenergy Science and Engineering, 2024, 242:213259. doi: 10.1016/j.geoen.2024.213259
    [16]
    YU Y P, LIU J X, LI B, et al. Analysis of the hydraulic fracturing mechanism and fracture propagation law with a new extended finite element model for the silty hydrate reservoir in the South China Sea[J]. Journal of Natural Gas Science and Engineering, 2022, 101:104535. doi: 10.1016/j.jngse.2022.104535
    [17]
    卢聪, 郭建春, 王文耀, 等. 支撑剂嵌入及对裂缝导流能力损害的实验[J]. 天然气工业,2008,28(2):99-101. doi: 10.3787/j.issn.1000-0976.2008.02.028

    LU Cong, GUO Jianchun, WANG Wenyao, et al. Experimental research on proppant embedment and its damage to fractures conductivity[J]. Natural Gas Industry, 2008, 28(2):99-101. doi: 10.3787/j.issn.1000-0976.2008.02.028
    [18]
    孙友宏, 沈奕锋, 张国彪, 等. 海底水合物储层双增改造浆液及其固结体性能[J]. 中国石油大学学报(自然科学版),2022,46(6):1-10.

    SUN Youhong, SHEN Yifeng, ZHANG Guobiao, et al. Performance of dual-increasing stimulation slurry and its consolidating body for submarine hydrate reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(6):1-10.
    [19]
    叶飞, 夏天晗, 应凯臣, 等. 盾构隧道壁后注浆浆液与地层适配性优选方法[J]. 岩土工程学报,2022,44(12):2225-2233. doi: 10.11779/CJGE202212009

    YE Fei, XIA Tianhan, YING Kaichen, et al. Optimization method for backfill grouting of shield tunnel based on stratum suitability characteristics[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12):2225-2233. doi: 10.11779/CJGE202212009
    [20]
    张嘉凡, 孙晓东, 刘洋, 等. 倾斜裂隙动水注浆扩散规律及堵水关键域研究[J]. 煤炭学报,2023,48(S2):575-588.

    ZHANG Jiafan, SUN Xiaodong, LIU Yang, et al. Study on diffusion law of dynamic water grouting in inclined fracture and key areas of water plugging[J]. Journal of China Coal Society, 2023, 48(S2):575-588.
    [21]
    DRAGANOVIĆ A, STILLE H. Filtration and penetrability of cement-based grout: Study performed with a short slot[J]. Tunnelling and Underground Space Technology, 2011, 26(4):548-559. doi: 10.1016/j.tust.2011.02.007
    [22]
    周军霞, 张学奇, 牛佳斌, 等. 改性超细水泥基注浆材料裂隙注浆扩散规律研究[J]. 辽宁工程技术大学学报(自然科学版),2024,43(6):671-681.

    ZHOU Junxia, ZHANG Xueqi, NIU Jiabin, et al. Study on crack grouting diffusion law of modified ultrafine cement-based grouting material[J]. Journal of Liaoning Technical University(Natural Science Edition), 2024, 43(6):671-681.
    [23]
    QI Y, SUN Y H, LI B, et al. Novel dual-enhanced stimulation for safe and efficient Marine hydrate production[J]. Petroleum Science, 2025, 22(2):805-820. doi: 10.1016/j.petsci.2024.11.010
    [24]
    沈云琦, 李凤霞, 张岩, 等. 复杂裂缝网络内支撑剂运移及铺置规律分析[J]. 油气地质与采收率,2020,27(5):134-142.

    SHEN Yunqi, LI Fengxia, ZHANG Yan, et al. Analysis of proppant migration and layout in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5):134-142.
    [25]
    何思源. 复杂裂缝支撑剂输运规律模拟研究[D]. 成都: 西南石油大学, 2019.

    HE Siyuan. Simulation study on transport law of proppant in complex fractures[D]. Chengdu: Southwest Petroleum University, 2019.
    [26]
    LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1):5-16. doi: 10.31035/cg2018003
    [27]
    董林, 廖华林, 李彦龙, 等. 天然气水合物沉积物力学性质测试与评价[J]. 海洋地质前沿,2020,36(9):34-43.

    DONG Lin, LIAO Hualin, LI Yanlong, et al. Measurement and assessment of mechanical properties of hydrate-bearing sediments[J]. Marine Geology Frontiers, 2020, 36(9):34-43.
    [28]
    ZHAO Y P, HU G W, LIU L L, et al. Mechanical properties of gas hydrate-bearing sediments: Research progress, challenges and perspectives[J]. Earth-Science Reviews, 2025, 262:105058. doi: 10.1016/j.earscirev.2025.105058
    [29]
    郝希宁, 汪志明, 薛亮, 等. 泥浆帽控压钻井裂缝漏失规律[J]. 石油钻采工艺,2009,31(5):48-51. doi: 10.3969/j.issn.1000-7393.2009.05.012

    HAO Xining, WANG Zhiming, XUE Liang, et al. Study on lost circulation methods in mud cap managed pressure drilling[J]. Oil Drilling & Production Technology, 2009, 31(5):48-51. doi: 10.3969/j.issn.1000-7393.2009.05.012
    [30]
    吴迪, 周顺华, 李尧臣. 饱和砂土中泥浆渗透的变形-渗流-扩散耦合计算模型[J]. 力学学报[J],2015,47(6):1026-1036.

    WU Di, ZHOU Shunhua, LI Yaochen. A deformation-infiltration-dispersion coupling model for the slurry infiltration computation in saturated sand[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):1026-1036.
    [31]
    姚军朋, 司马立强. 合川地区低孔低渗砂岩储层含水饱和度的评价方法[J]. 天然气工业,2010,30(10):22-25. doi: 10.3787/j.issn.1000-0976.2010.10.005

    YAO Junpeng, SI MA Liqiang. Evaluation methods for water saturation of low porosity and low permeability sandstone reservoirs in the Hechuan area, middle Sichuan Basin[J]. Natural Gas Industry, 2010, 30(10):22-25. doi: 10.3787/j.issn.1000-0976.2010.10.005
    [32]
    ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids(Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8):1739-1758. doi: 10.1351/pac199466081739
    [33]
    傅旭. 基于低粘度浆液在粉细砂地层的扩散规律的工程应用研究[D]. 太原: 太原理工大学, 2021.

    FU Xu. Engineering application research based on diffusion law of low viscosity slurry in fine sand formation[D]. Taiyuan: Taiyuan University of Technology, 2021.
    [34]
    范铁刚, 张广清. 注液速率及压裂液黏度对煤层水力裂缝形态的影响[J]. 中国石油大学学报(自然科学版),2014,38(4):117-123.

    FAN Tiegang, ZHANG Guangqing. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(4):117-123.
    [35]
    张改玲. 裂隙注浆偏流机理及帷幕体采动效应研究综述与展望[J]. 工程地质学报,2022,30(3):987-997.

    ZHANG Gailing. Mechanism of deflection propagation for grouting in fractured rock mass with flowing water and mining effect on grouted curtain: a review[J]. Journal of Engineering Geology, 2022, 30(3):987-997.
    [36]
    ZUO L, LI X L, HAN Z X, et al. Numerical simulation of proppant transport in major and branching fractures based on CFD-DEM[J]. ACS Omega, 2024, 9(11):13163-13171.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (59) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return