Volume 38 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
KANG Hongbing, NIU Chengcheng, JIA Hu, et al.Ultra-high temperature workover fluid with flexible rubber particles used in shunbei oilfield[J]. Drilling Fluid & Completion Fluid,2021, 38(4):525-530 doi: 10.3969/j.issn.1001-5620.2021.04.020
Citation: KANG Hongbing, NIU Chengcheng, JIA Hu, et al.Ultra-high temperature workover fluid with flexible rubber particles used in shunbei oilfield[J]. Drilling Fluid & Completion Fluid,2021, 38(4):525-530 doi: 10.3969/j.issn.1001-5620.2021.04.020

Ultra-High Temperature Workover Fluid with Flexible Rubber Particles Used in Shunbei Oilfield

doi: 10.3969/j.issn.1001-5620.2021.04.020
  • Received Date: 2021-02-28
  • Publish Date: 2021-07-31
  • The conventional viscosified workover fluid used in the high temperature oil and gas wells in Shunbei Oilfield is easy to lose its viscosity. To solve this problem, a new workover fluid containing flexible rubber particles that is able to resist 180 ℃ was developed based on the fact that the viscosity of a flexible high molecular weight rubber particle changes in a pattern of “disperse, degrade, viscosify, and stabilize viscosity”. The dynamic viscosity of this workover fluid can be adjusted between 20 mPa·s and 140 mPa·s. The density of the workover fluid adjusted between 1.0 g/cm3 and 1.3 g/cm3, which means that the workover fluid can be weighted with or without solid weighting agents. The pattern of the viscosity change of the workover fluid at different temperatures was studied. After aging for 1 day at 180 ℃, the viscosity of the workover fluid was apparently higher than that of a conventional xanthan gum workover fluid, indicating that the new workover fluid had the ability of stabilizing its viscosity. The rate of corrosion of this workover fluid to aluminum alloy is less than 2.22 g/(m2·h). The workover fluid also had very good sand carrying capacity. This study has certain guiding significance for the safe and efficient workover operations of high-temperature oil and gas wells in Shunbei.

     

  • loading
  • [1]
    贾虎,杨宪民. 固化水工作液在压井修井过程中的成功应用[J]. 钻井液与完井液,2007(S1):115-117, 120.

    JIA Hu, YANG Xianmin. The successful use of solidified water fluid as kill and workover fluids[J]. Drilling Fluid & Completion Fluid, 2007(S1):115-117, 120.
    [2]
    李三喜,周俊昌. 固化水修井液体系在平湖油气田B8井中的应用与创新[J]. 中国海上油气,2005(4):256-259. doi: 10.3969/j.issn.1673-1506.2005.04.009

    LI Sanxi, ZHOU Junchang. The application of solidified-water-based completion fluid system in well B8, Pinghu oil and gas field[J]. China Offshore Oil and Gas, 2005(4):256-259. doi: 10.3969/j.issn.1673-1506.2005.04.009
    [3]
    孙琳,魏鹏,蒲万芬,等. 抗剪切型黄原胶强化泡沫体系的性能[J]. 石油化工,2015,44(4):494-499. doi: 10.3969/j.issn.1000-8144.2015.04.016

    SUN Lin, WEI Peng, PU Wanfen, et al. Performances of shear resistant xanthan enhanced foam system[J]. Petrochemical Technology, 2015, 44(4):494-499. doi: 10.3969/j.issn.1000-8144.2015.04.016
    [4]
    FU Weiqi, WANG Zhiyuan, SUN Baojiang, et al. Rheological properties of methane hydrate slurry in the presence of xanthan gum[J]. 199903-PA, 2020, 25(5):2341-2352.
    [5]
    王小金. 黄原胶的化学改性与性能研究[D]. 山东大学, 2015.

    WANG Xiaojin. Synthesis and properties of modified xanthan gum[D]. Shan Dong University, 2015.
    [6]
    史胜龙,王业飞,周代余,等. 耐温耐盐抗剪切黄原胶强化泡沫体系性能[J]. 石油与天然气化工,2016,45(5):56-61.

    SHI Shenglong, WANG Yefei, ZHOU Daiyu, et al. Performance of temperature-resistant, salinity-tolerant and shear-resistant xanthan gum enhanced foam system[J]. Chemical Engineering of Oil & Gas, 2016, 45(5):56-61.
    [7]
    采油采气专业标准化委员会.SY/T 5185—2016, 砾石充填防砂水基携砂液性能评价方法[S]. 北京: 石油工业出版社, 2016.

    Standardization Committee for Oil and Gas Production.SY/T 5185—2008, Evaluation methods of water-based carrying fluid for gravel packing sand control[S].Beijing: Petroleum Industry Press, 2016.
    [8]
    李成功, 巫世杰, 戴圣龙, 等. 先进铝合金在航空航天工业中的应用与发展[C]// 全国铝合金及其应用会议. 中国有色金属学会, 2001: 14-21

    LI Chenggong, WU Shijie, DAI Shenglong, et al. Application and development of advanced aluminum alloys in aerospace industry[C]// National Aluminum Alloy and Its Application Conference. 2001: 14-21.
    [9]
    冯一可. 2A50铝合金在含有较低氯离子浓度溶液中的腐蚀性能研究[J]. 科技视界,2019(17):104-106.

    FENG Yike. Research of corrosion resistance for aluminum alloy 2A50 in solution with lower concentration of chloride ion[J]. Science & Technology Vision, 2019(17):104-106.
    [10]
    陈鑫,田文明,李松梅,等. 氯离子和温度对铝合金在冷却液中腐蚀的影响[J]. 北京航空航天大学学报,2016,42(10):2243-2249.

    CHEN Xin, TIAN Wenming, LI Songmei, et al. Effect of chloride ion and temperature on corrosion of aluminum alloy in coolant[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2243-2249.
    [11]
    罗有刚, 巨亚锋, 王尚卫, 等. 纳米复合泡沫凝胶修井液的研制与试验[J]. 钻井液与完井液, 2020, 37(1): 127-132.

    LUO Yougang, JU Yafeng, WANG Shangwei,et al. Development and test of a nanometer compound gel foam workover fluid[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 127-132.
    [12]
    董军. 新型无固相防硫化氢低伤害修井液技术[J]. 钻井液与完井液, 2015, 32(2): 23-25.

    DONG Jun. New solids-free, hydrogen sulfide-proof, low damage workover fluid technology[J]. Drilling Fluid & Completion Fluid, 2015, 32(2): 23-25.
    [13]
    方培林,白健华,王冬,等. BHXJY-01修井暂堵液体系的研究与应用[J]. 石油钻采工艺,2012,34(S0):101-103.

    FANG Peilin,BAI Jianhua,WANG Dong,et al. Research and application of BHXJY-01 temporary plugging solution system for heavy oil reservoirs[J]. Oil Drilling & Production Technology, 2012, 34(S0):101-103.
    [14]
    赵全民,李燕,刘浩亚,等. SXJD-I型低伤害暂堵修井液技术[J]. 石油钻探技术,2017,45(1):109-113.

    ZHAO Quanmin,LI Yan,LIU Haoya,et al. The technology of SXJD-I type low damage temporary plugging workover fluid[J]. China Petroleum Machinery, 2017, 45(1):109-113.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (435) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return