Volume 38 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
ZHANG Danian, CHENG Xingsheng, LI Yongping, et al.Study on characterization of the performance of fracturing fluids in large scale volumetric fracturing[J]. Drilling Fluid & Completion Fluid,2021, 38(4):517-524 doi: 10.3969/j.issn.1001-5620.2021.04.019
Citation: ZHANG Danian, CHENG Xingsheng, LI Yongping, et al.Study on characterization of the performance of fracturing fluids in large scale volumetric fracturing[J]. Drilling Fluid & Completion Fluid,2021, 38(4):517-524 doi: 10.3969/j.issn.1001-5620.2021.04.019

Study on Characterization of the Performance of Fracturing Fluids in Large Scale Volumetric Fracturing

doi: 10.3969/j.issn.1001-5620.2021.04.019
  • Received Date: 2021-04-20
  • Publish Date: 2021-07-31
  • In the national standard “The evaluation measurement for properties of water based fracturing fluid” (SY/T 5107-2016), the shearing history of a fracturing fluid in large scale volumetric fracturing and the high shear rate of the fracturing fluid when it passes through a perforation cannot be simulated. A study has been performed on the investigation of how to measure the performance of a fracturing fluid in the whole process of volumetric fracturing job. Based on the actual flow rates in field fracturing operation, the shear history of a fracturing fluid flowing through pipes, perforation and formation fractures was simulated. Meanwhile, the dosage of gel breaker was optimized in an effort to find the concentration of the gel breaker when the lowest damaging to the reservoir is required. Thus, the evaluation of a fracturing fluid should be able to quantify two parameters; sand carrying capacity of the fracturing fluid which satisfy the needs of fracturing job and thorough breaking of the gel some time after the fracturing job is completed. Using the transparent parallel board model, the dynamic sand carrying capacity of a fracturing fluid was investigated, and the test results will provide a design basis for the “full fracture propping” in large scale volumetric fracturing. The results of the new evaluation method show that the compound crosslinked guar gum fracturing fluid and the crosslinked polymer fracturing fluid have the highest viscosity losses when passing through perforations at high flow velocity. The emulsion association fracturing fluid is sensitive to gel breaker, if the formation damage caused by gel breaking process is low, the dynamic sand carrying performance will not be able to satisfy the needs of placing proppant particles into the distal end in a fracture. A low concentration guar gum fracturing fluid treated with optimized amount of gel breaker will have good dynamic sand carrying capacity at flow rates prevailing in field operations, and thus satisfy the technical goals of placing proppants into the distal end of a fracture.

     

  • loading
  • [1]
    RAE. P, DI G. Fracturing fluids and breaker systems-a review of the state-of-the-art[R]. SPE 37359, 1996.
    [2]
    蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体 积压裂技术[J]. 天然气工业,2017,37(1):90-96. doi: 10.3787/j.issn.1000-0976.2017.01.011

    JIANG Tingxue, BIAO Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1):90-96. doi: 10.3787/j.issn.1000-0976.2017.01.011
    [3]
    周仲建,于世虎,张晓虎. 页岩气用复合增效压裂液的研究与应用[J]. 钻采工艺,2019(4):89-92. doi: 10.3969/J.ISSN.1006-768X.2019.04.13

    ZHOU Zhongjian, YU Shihu , ZHANG Xiaohu. R&D composite synergistic fracturing fluid for shale gas and application[J]. Drilling &Production Technology, 2019(4):89-92. doi: 10.3969/J.ISSN.1006-768X.2019.04.13
    [4]
    周德胜,张争,惠峰,等. 滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J]. 石油钻采工艺,2017,39(4):499-508.

    ZHOU Desheng, ZHANG Zheng, HUI Feng, et al. Experiment and numerical simulation on transportation laws of proppant in major fracture during slick water fracturing[J]. Oil Drilling & Production Technology, 2017, 39(4):499-508.
    [5]
    SY/T5107-2016: 2017《水基压裂液性能评价方法》.

    SY/T5107-2016 :2017, The evaluation measurement for properties of water-based fracturing fluid.
    [6]
    LI L, ZHOU J, SUN H, et al. A novel slow-release rheology modifier for well treatment fluids[M]. 2014.
    [7]
    米卡尔J. 埃克诺米德斯, 肯尼斯G. 诺尔特. 油藏增产措施: 第三版[M]. 张保平, 蒋阗, 刘立云, 等译. 北京: 石油工业出版社, 2002: 266

    MICHAEL J. ECONOMIDES , KENNETH G. NOLTE. "Reservoir Stimulation Third Edition"[M]. New York: John Wiley & Sons, 2000.
    [8]
    ISO13503-1: 2011《完井液的黏度特性测量》.

    ISO 13503-1:2011Completion fluids and materials - Part 1: Measurement of viscous properties of completion fluids.
    [9]
    ISO13503-4: 2006《增产液和砾石充填静态滤失测量程序》.

    ISO 13503-4:2006 Petroleum and natural gas industries - Completion fluids and materials - Part 4: Procedure for measuring stimulation and gravel-pack fluid leakoff under static conditions.
    [10]
    SY/T 5107-2005: 2006 水基压裂液性能评价方法.

    SY/T 5107-2005:2006 Recommended practices on measuring the properties of water-based fracturing fluid.
    [11]
    周成裕,陈馥,黄磊光,等. 一种高温抗剪切聚合物压裂液的研制[J]. 钻井液与完井液,2008,25(1):67-68. doi: 10.3969/j.issn.1001-5620.2008.01.022

    ZHOU Chengyu, CHEN Fu, HUANG Leiguang,. The development of a high temperature and shearing resistant polymer fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2008, 25(1):67-68. doi: 10.3969/j.issn.1001-5620.2008.01.022
    [12]
    刘通义, 谭坤, 陈光杰. 交联压裂液抗剪切性能评价方法探讨[C]//全国流变学学术会议. 中国化学会;中国力学学会, 2002.

    LIU Tongyi, TAN Kun , CHEN Guangjie. Discuss for evaluate method of fracturing fluid shear property[C]//. Lang fang: The Seventh National Rheology Conference, 2002.
    [13]
    张国忠,张足斌. 管流液体的有效剪切速率[J]. 油气田地面工程,2000,19(1):1-3. doi: 10.3969/j.issn.1006-6896.2000.01.001

    ZHANG Guozhon,ZHANG Zubin. The effective shear rate of the fluid flowing through the pipe[J]. Oil-Gas field Surface Engineering, 2000, 19(1):1-3. doi: 10.3969/j.issn.1006-6896.2000.01.001
    [14]
    NASR-EL-DIN H, AL-MOHAMMED A, AL-AAMRI A, et al. A study of gel degradation, surface tension, and their impact on the productivity of hydraulically fractured gas wells[C]//2007.
    [15]
    SARWAR M U, CAWIEZEL K E , NASR-EL-DIN H A . Gel degradation studies of oxidative and enzyme breakers to optimize breaker type and concentration for effective break profiles at low and medium temperature ranges[C]. SPE Hydraulic Fracturing Technology Conference - The Woodlands, Texas, USA , 2011.01
    [16]
    赵莉,胡军,尤颖颖,等. 确定破胶剂加量的动态模拟实验方法的研究和现场应用[J]. 内蒙古石油化工,2020,46(9):16-18.

    ZHAO Li, HU Jun, YOU Yingying, et al. Study on dynamic simulation experiment method to fix breaker dosage and its field application[J]. Inner Mongolia Petrochemical Industry, 2020, 46(9):16-18.
    [17]
    SYT 6376-2008 《压裂液通用技术条件》.

    SYT 6376-2008, General technical specifications of fracturing fluids.
    [18]
    温庆志,高金剑,刘华,等. 滑溜水携砂性能动态实验[J]. 石油钻采工艺,2015,37(2):97-100.

    WEN Qingzhi, GAO Jinjian, LIU Hua, et al. Dynamic experiment on slick-water prop-carrying capacity[J]. Oil Drilling & Production Technology, 2015, 37(2):97-100.
    [19]
    黄彩贺. 压裂液携砂性能和交联过程流变动力学研究[D]. 上海: 华东理工大学, 2015

    HUANG Caihe. Study on the fracturing fluids proppant carrying property and rheo-kinetics of crosslinking process[D]. Shang Hai: East China University of Science and Technology, 2015.
    [20]
    GALINDO, TANHEE. "Does higher viscosity improve proppant transport?" [R]. SPE Oklahoma City Oil and Gas Symposium, Oklahoma City, Oklahoma, USA, April 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (417) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return