Volume 38 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
LI Chao, HUANG Yue, LIU Gang, LUO Jiansheng, XU Mingbiao, YOU Fuchang. Design and Performance of a Slow-Release Self-Gel-Breaking Completion Fluid for Multilateral Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(2): 218-225. doi: 10.3969/j.issn.1001-5620.2021.02.015
Citation: LI Chao, HUANG Yue, LIU Gang, LUO Jiansheng, XU Mingbiao, YOU Fuchang. Design and Performance of a Slow-Release Self-Gel-Breaking Completion Fluid for Multilateral Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(2): 218-225. doi: 10.3969/j.issn.1001-5620.2021.02.015

Design and Performance of a Slow-Release Self-Gel-Breaking Completion Fluid for Multilateral Wells

doi: 10.3969/j.issn.1001-5620.2021.02.015
  • Received Date: 2020-10-24
  • Slow-release self-gel-breaking completion fluid for multilateral wells is a new kind of wellbore working fluid. With its special self-gel-breaking capacity in reservoir, this completion fluid helps avoid conventional acid jobs and gel-breaking operation in well completion, and is thus an important technology linking the acid job with subsequent open hole gravel packing. In laboratory study, based on the reservoir characteristics of the multilateral wells in block Enping in Nanhai Oilfield, the design principle of the slow-release self-gel-breaking completion fluids was analyzed, the flow pattern regulator high pyruvate xanthan gum was selected and characterized, and the gel-breaking capacity and reservoir protection performance of the slow-release self-gel-breaking completion fluid was examined. The study showed that the method of designing the low-release self-gel-breaking completion fluid was established based on the structure-function relationship between the core additive xanthan gum and the self-gel-breaking performance of the completion fluid, combined with the gel-breaking and gel-protection synergistic effect. The molecular weight of the synthesized xanthan gum modified with pyruvic acid is 8.06×106, and the content of pyruvate in the modified xanthan gum molecule is as high as 7.9%. Compared with conventional xanthan gum, the high pyruvate xanthan gum has conformation transition temperature and thermal stability that are both significantly reduced, and has no temperature threshold, rendering the high pyruvate xanthan gum better slow-release degradation property. For the slow-release self-gel-breaking completion fluid formulated, the self-gel breaking was adjusted through the combined use of high pyruvate xanthan gum and gel-protection agents, and the time for the self-gel-breaking was controlled between 5 days and 17 days. Blocking of pores of reservoir rocks was eliminated after gel-breaking of the completion fluid, and the average percent permeability recovery of cores taken from reservoir rocks can be as high as 90.36%±0.23%, proving that the slow-release self-gel-breaking completion fluid has good reservoir protection capacity.

     

  • loading
  • [1]
    郑凯, 李明, 刘小利, 等. 多分支井固井完井技术研究进展[J]. 钻采工艺, 2013, 36(6):36-38.

    ZHENG Kai, LI Ming, LIU Xiaoli, et al. Research progress of cementing and completion technology of multi-brahch well[J]. Drilling & Production Technology, 2013, 36(6):36-38.
    [2]
    祝金利, 姜汉桥, 梁春梅. 多分支井技术在辽河稠油油藏中的应用[J]. 西安石油大学学报(自然科学版), 2008, 23(2):55-57. ZHU Jinli, JIANG Hanqiao, LIANG Chunmei. Application of multi-lateral well technology in Liaohe heavy oil reservoirs[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2008, 23(2):55-57.
    [3]
    ABDEIMAWLA A. Deciphering the performance of multi-lateral and extended reach wells for reserves evaluation in unconventional resource plays[C]. SPE 192993, 2018.
    [4]
    AL-KHALDI M H, GHOSH B, GHOSH D. A novel enzyme breaker for mudcake removal in high temperature horizontal and multi-lateral wells[C]. SPE 147863, 2011.
    [5]
    张炎, 刘坤芳, 余雷. 多分支井钻井完井应用技术研究[J]. 石油钻探技术, 2001, 29(6):11-13.

    ZHANG Yan, LIU Kunfang, YU Lei. Study on application techniques of multilateral drilling and completion[J]. Petroleum Drilling Techniques, 2001, 29(6):11-13.
    [6]
    张荣, 李自立, 王洪伟. 无固相弱凝胶钻开液延时破胶技术研究[J]. 钻井液与完井液, 2011, 28(2):42-44.

    ZHANG Rong, LI Zili, WANG Hongwei. Experimental research on new type of thermo-stable solid-free completion fluid[J]. Drilling Fluid & Completion Fluid, 2011, 28(2):42-44.
    [7]
    马美娜, 许明标, 唐海雄, 等. 有效降解PRD钻井液的低温破胶剂JPC室内研究[J]. 油田化学, 2005, 22(4):289-291.

    MA Meina, XU Mingbiao, TANG Haixiong, et al. Low temperature gel breaker JPC for breakdown of gelled PRD polymer drilling-in fluid in borehole bottom[J]. Oilfield Chemistry, 2005, 22(4):289-291.
    [8]
    韦红术, 张俊斌, 张伟国, 等. 泥饼可液化处理的UltraFlo钻井完井液[J]. 钻井液与完井液, 2015, 32(4):37-44.

    WEI Hongshu, ZHANG Junbin, ZHANG Weiguo, et al. Ultraflo drill-in fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):37-44.
    [9]
    权宝华, 方培林, 任强, 等. 螯合酸完井液体系的研究及应用[J]. 钻井液与完井液, 2016, 33(4):122-126.

    QUAN Baohua, FANG Peilin, REN Qiang, et al. Study and application of a completion fluid containing acid chelating agents[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):122-126.
    [10]
    何春明, 雷旭东, 卢智慧, 等. VES自转向酸破胶问题研究[J]. 钻井液与完井液, 2011, 28(4):60-63.

    HE Chunming, LEI Xudong, LU Zhihui, et al.Study on gel-breaking performance of VES sefl-diversion acid[J]. Drilling Fluid & Completion Fluid, 2011, 28(4):60-63.
    [11]
    程鑫桥, 舒福昌, 李蔚萍, 等. 一种用于PRD钻井液的缓释破胶剂[J]. 钻井液与完井液, 2010, 27(1):33-37.

    CHENG Xinqiao, SHU Fuchang, LI Weiping, et al. A controlled release of gel breaker used in the PRD drilling fluid[J]. Drilling Fluid & Completion Fluid, 2010, 27(1):33-37.
    [12]
    张伟国, 许明标, 由福昌. 直接返排钻进完井液储层保护机理分析[J]. 钻井液与完井液, 2017, 34(1):87-91.

    ZHANG Weiguo, XU Mingbiao, YOU Fuchang. Analysis of research protection mechanism by direct drilling fluid flowback[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):87-91.
    [13]
    胡成亮, 何丕祥, 蒋官澄, 等. 修井作业自降解防漏堵漏体系[J]. 石油学报, 2016, 37(S2):150-157.

    HU Chengliang, HE Pixiang, JIANG Guancheng, et al. Self-degradation plugging system during workover operation[J].Acta Petrolei Sinica, 2016, 37(S2):150-157.
    [14]
    涂云, 牛亚斌, 刘璞, 等. 微胶囊缓释破胶剂的室内研制[J]. 油田化学, 1997, 14(3):213-217.

    TU Yun, NIU Yabin, LIU Pu, et al. Laboratory preparation of microencapsulated slow release gel breaker[J]. Oilfield Chemistry, 1997, 14(3):213-217.
    [15]
    李蔚萍, 向兴金, 舒福昌, 等. 生物酶破胶剂HSW-L对PRD钻井液破胶效果的影响因素[J]. 油田化学, 2009, 26(1):8-11.

    LI Weiping, XIANG Xingjin, SHU Fuchang, et al. Enzyme gel breaker HSW-L for weakly gelled solid-free biopolymer drilling-in fluid[J]. Oilfield Chemistry, 2009, 26(1):8-11.
    [16]
    许明标, 马美娜, 张峰, 等. 适于生物酶破胶的新型水平井钻开液体系[J]. 石油天然气学报, 2006, 28(6):130-132.

    XU Mingbiao, MA Meina, ZHANG Feng, et al. A new horizontal well drilling fluid system suitable for enzyme demulsification[J]. Journal of Oil and Gas Technology, 2006, 28(6):130-132.
    [17]
    管保山, 从连铸, 丁里, 等. 延迟破胶及强制裂缝闭合技术的研究及应用[J]. 钻井液与完井液, 2006, 23(4):62-64.

    GUAN Baoshan, CONG Lianzhu, DING Li, et al. Research and applicaiton of delayed break and forced fracture closure technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(4):62-64.
    [18]
    崔伟香, 王春鹏. 压裂用胶囊破胶剂在高压液体中的释放研究[J]. 油田化学, 2016, 33(4):619-622.

    CUI Weixiang, WANG Chunpeng. Extrusion and release research of encapsulated gel breaker in fracturing fluid with high pressure[J]. Oilfield Chemistry, 2016, 33(4):619-622.
    [19]
    徐晓峰, 郭旭跃, 胡佩. 新型压裂液低温破胶体系的研制[J]. 特种油气藏, 2004, 11(6):89-91.

    XU Xiaofeng, GUO Xuyue, HU Pei. Development of a new low temperature breaking system of fracture fluid[J]. Special Oil and Gas Reservoir, 2004, 11(6):89-91.
    [20]
    吴乐, 徐同台, 韩斅, 等. 黄原胶高温稳定性的影响因素[J]. 钻井液与完井液, 2011, 28(6):77-80

    , 97. WU Le, XU Tongtai, HAN Xiao, et al. Factors affecting the high temperature stability of xanthan gum[J]. Drilling Fluid & Completion Fluid, 2011, 28(6):77-80, 97.
    [21]
    CALLET F, MILAS M, RINAUDO M. Influence of acetyl and pyruvate contents on rheological properties of xanthan in dilute solution[J]. International of Biological Macromolecules, 1987, 9(5):291-293.
    [22]
    D A D O U S M, E L-B A R G H O U T H I M I, ALABDALLAH S K, et al. Effect of protonation state and N-acetylation of chitosan on its interaction with xanthan gum:a molecular dynamics simulation study[J]. Marine Drugs, 2017, 15(298):1-19.
    [23]
    赵润宝, 詹晓北, 郑志永, 等. 添加游离丙酮酸对黄单胞杆菌产黄原胶中丙酮酸功能基团含量的影响[J]. 食品研究与开发, 2006, 27(1):14-17.

    ZHAO Runbao, ZAN Xiaobei, ZHENG Zhiyong, et al. Effects of the free pyruvate addition on the pyruvate mass fraction in xanthan produced by xanthomonas campestris[J]. Food Research and Development, 2006, 27(1):14-17.
    [24]
    秦志刚, 詹晓北, 贾薇, 等. 高丙酮酸黄原胶发酵与流变特性研究[J]. 食品与发酵工业, 2007, 33(1):32-35.

    QING Zhigang, ZHAN Xiaobei, JIA Wei, et al. Production of high-pyruvate-content xanthan and its rheological properties[J]. Food and Fermentation Industries, 2007, 33(1):32-35.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (446) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return