Volume 38 Issue 1
Aug.  2021
Turn off MathJax
Article Contents
YANG Yu, XU Shuanhai, ZHANG Hao, HAN Yongliang, ZHANG Weidong, LI Yongqiang. Preparation Properties and Structure of High Heat Conduction and Low Density Cementing Materials for Geothermal Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 93-101. doi: 10.3969/j.issn.1001-5620.2021.01.016
Citation: YANG Yu, XU Shuanhai, ZHANG Hao, HAN Yongliang, ZHANG Weidong, LI Yongqiang. Preparation Properties and Structure of High Heat Conduction and Low Density Cementing Materials for Geothermal Wells[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 93-101. doi: 10.3969/j.issn.1001-5620.2021.01.016

Preparation Properties and Structure of High Heat Conduction and Low Density Cementing Materials for Geothermal Wells

doi: 10.3969/j.issn.1001-5620.2021.01.016
  • Received Date: 2020-09-12
    Available Online: 2021-08-16
  • High heat conduction and low density cementing material (HLC) can effectively solve the cementing problem of deep and easy to leak geothermal wells, and can effectively improve the underground heat transfer efficiency of geothermal wells. Through orthogonal test, based on analytic hierarchy process (AHP) and matrix analysis, and considering four indexes of thermal conductivity, 48 h compressive strength, density and cost, the HLC which can be used for cementing of deep geothermal well was prepared. The performance indexes of cementing materials were tested by experiments. The microstructure of HLC was observed by SEM, XRD and MIP, and the mechanism of heat conduction was analyzed. The results show that the HLC formula is: 0.78 water solid ratio, 55% cement, 9% graphite, 25% quartz powder, 2% fly ash, 2% silica fume, 2% fluid loss additive, 3% stabilizer, 1.5% expansion agent and 0.5% retarder; its performance indexes meet the requirements of relevant specifications; the addition of graphite improves the microstructure and pore size distribution of HLC; the heat conduction mechanism conforms to the heat conduction path theory. It can be used for reference for cementing construction and preparation of similar materials in deep geothermal wells.

     

  • loading
  • [1]
    WANG Kai,YUAN Bin,JI Guomin,et al. A comprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of Petroleum Science and Engineering,2018,168:465-477.
    [2]
    自然资源部中国地质调查局等.《 中国地热能发展报告(2018)》[R]. 北京:中国石化出版社, 2018. China Geological Survey, Ministry of Natural Resources, etc. China Geothermal Energy Development Report (2018)[R]. Beijing:China Petrochemical Press, 2018.
    [3]
    窦斌,田红,郑君,等. 地热工程学[M]. 武汉:中国地质大学出版,2020. DOU Bi n,TIAN Hong,ZHENG Jun, et al. Geothermal engineering[M]. Wuhan:China University of Geosciences Publishing, 2020.
    [4]
    李瑞霞,王高升,宋先知,等. 固井水泥对同轴型换热系统取热效果影响数值分析[J]. 建筑科学,2018,34(4):36-40.

    LI Ruixia, WANG Gaosheng, SONG Xianzhi, et al. Numerical analysis of the effect of cementing cement on the heat extraction effect of coaxial heat exchange system[J]. Building Science,2018,34(4):36-40.
    [5]
    张浩,徐拴海,杨雨,等. 地热井固井材料导热性能影响因素[J]. 煤田地质与勘探,2020,48(2):195-201.

    ZHANG Hao,XU Shuohai,YANG Yu,et al. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. Coalfield Geology and Exploration,2020,48(2):195-201.
    [6]
    冯建月. 高温地热井微珠低密度水泥体系设计与性能研究[C]. 第十九届全国探矿工程(岩土钻掘工程)学术交流年会论文集. 中国地质学会探矿工程专业委员会, 2017:110-114. FENG Jianyue. Design and performance of microbead low-density cement system for high-temperature geothermal wells[C]. Proceedings of the 19th National Annual Conference of Prospecting Engineering(Rock and Soil Drilling Engineering) Academic Exchange. Professional Committee of Prospecting Engineering of Chinese Geological Society, 2017

    :110-114.
    [7]
    丁志伟,李嘉奇,赵靖影,等. 窄密度窗口正注反挤低密度水泥浆固井技术[J]. 钻井液与完井液,2019, 36(6):759-765.

    DING Zhiwei,LI Jiaqi,ZHAO Jingying,et al. Cementing technology of forward injection and backward extrusion low density cement slurry with narrow density window[J]. Drilling Fluid & Completion Fluid,2019,6(6):759-765.
    [8]
    左景栾,孙晗森,吴建光,等. 煤层气超低密度固井技术研究与应用[J]. 煤炭学报,2012,37(12):2076-2082.

    ZUO Jingluan, SUN Hansen, WU Jianguang, et al. Research and application of ultra-low density cementing technology for coal bed methane[J]. Journal of China Coal Society,2012,37(12):2076-2082.
    [9]
    LARRARD F D, SEDRAN T. Optimization of ultrahigh-performance concrete by the use of a packing model[J]. Cement and Concrete Research,1994,24(6):997-1009.
    [10]
    SAATY T L. Analytic hierarchy process[M]. Encyclopedia of Operations Research and Management Science. 2001.
    [11]
    周玉珠. 正交实验设计的矩阵分析方法[J]. 数学的实践与认识,2009,39(2):202-207.

    ZHOU Yuzhu. The matrix analysis method of orthogonal experiment design[J]. Mathematics in Practice and Theory,2009,39(2):202-207.
    [12]
    彭晖,戈娅萍,杨振天,等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139.

    PENG Hui,GAO Yaping,YANG Zhentian, et al. Mechanical properties and microstructure of graphene oxide reinforced cement-based composites[J]. Journal of Composite Materials,2018,35(8):2132-2139.
    [13]
    郭晓潞,宋猛. 蒸压加气混凝土的孔结构及表征方法研究进展[J]. 材料导报,2018,32(S2):440-445.

    GUO Xiaolu, SONG Meng. Research progress of pore structure and characterization method of autoclaved aerated concrete[J]. Material Guide,2018,32(S2):440-445.
    [14]
    李刊,魏智强,乔宏霞,等. 纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能[J/OL]. 复合材料学报:1-11[2020-06-22

    ]. https://doi.org/10.13801/j.cnki.fhclxb.20200218.002. LI Kan,WEI Zhiqiang,QIAO Hongxia,et al. Early microstructure and properties of Nano-SiO2 modified polymer cement-based composite[J/OL]. Journal of composite materials:1-11[2020-06-22] https://doi.org/10.13801/j.cnki.fhclxb.20200218.002.
    [15]
    薛翠真,申爱琴,郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报,2019,33(8):1348-1353.

    XUE Cuizhen,SHEN Aiqin,GUO Yinchuan. Establishment of prediction model of compressive strength of concrete mixed with cwcpm based on pore structure parameters[J]. Materials Guide,2019,33(8):1348-1353.
    [16]
    TOBERER E S,BARANOWSKI L L,DAMES C. Advances in thermal conductivity[J]. Annual Review of Materials Research,2012,42:179-209.
    [17]
    YANG Xutong,LIANG Chaobo,MA Tengbo,et al. A review on thermally conductive polymeric composites:classification,measurement, model and equations, mechanism and fabrication methods[J].Advanced Composites and Hybrid Materials,2018,1(2):207-230.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (606) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return