Volume 38 Issue 1
Aug.  2021
Turn off MathJax
Article Contents
LYU Kaihe, WANG Zhongyi, HUANG Xianbin, WANG Jintang, YANG Zheng, WANG Ren, SHAO Zihua. A Temperature Sensitive Polymer Flow Pattern Modifier for Water Base Drilling Fluids for Deep Water Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 14-20. doi: 10.3969/j.issn.1001-5620.2021.01.003
Citation: LYU Kaihe, WANG Zhongyi, HUANG Xianbin, WANG Jintang, YANG Zheng, WANG Ren, SHAO Zihua. A Temperature Sensitive Polymer Flow Pattern Modifier for Water Base Drilling Fluids for Deep Water Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(1): 14-20. doi: 10.3969/j.issn.1001-5620.2021.01.003

A Temperature Sensitive Polymer Flow Pattern Modifier for Water Base Drilling Fluids for Deep Water Drilling

doi: 10.3969/j.issn.1001-5620.2021.01.003
  • Received Date: 2020-10-19
    Available Online: 2021-08-16
  • A flow pattern modifier PNAAM was developed to satisfy the needs of rheology control of water base drilling fluids at low temperatures in deep water drilling. PNAAM was synthesized with N-isopropyl acrylamide (NIPAM) and acrylamide monomers based on the fact that temperature sensitive polymers, when responding to the changes of temperature, show remarkable changes in their hydrodynamic volumes and molecular conformation. In laboratory study, the functional groups of the product of the synthesis reaction were characterized using FT-IR, and thermogravimetric analysis showed that the initial thermal decomposition temperature of the synthesis product was 300 ℃. Turbidity analysis of the synthesis product showed that the molar ratio of the monomers and salt concentration affect the LCST of the synthesis product by affecting the strength of the hydrogen bonds between the hydrophilic groups in the molecules of the synthesis product and the water molecules. The ratios of rheological parameters of PNAAM at 4 ℃, 25 ℃ and 65 ℃ in drilling fluids were: AV4 ℃AV25 ℃AV65 ℃= 1.75∶1.22∶1, PV4 ℃PV25 ℃PV65 ℃= 1.8∶1.4∶1 and YP4 ℃YP25 ℃YP65 ℃= 1.8∶1∶1.09. Analysis of the mechanisms shows that before the LCST is reached, the hydrophilic amide groups in the molecular chains of PNAAM are dominating the solution and PNAAM is soluble in water, hence there is no measurable hydrodynamic radius for PNAAM. When the environment temperature is greater than LCST, the hydrophobic groups in the molecular chains of PNAAM are dominating the solution and the hydrophobic associating action among the molecular chains of PNAAM is becoming stronger, thereby forming a 3-D network structure in the solution, which increases the viscosity of the solution and the particle sizes of the polymers, and makes the bentonite particles in the mud cakes more dense and more orderly arranged.

     

  • loading
  • [1]
    邱正松,赵欣. 深水钻井液技术现状与发展趋势[J]. 特种油气藏,2013,20(3):1-7.

    QIU Zhengsong, ZHAO Xin. Current situation and development trend of deepwater drilling fluid technology[J]. Special Oil & Gas Reservoir, 2013,20(3):1-7.
    [2]
    邱正松,徐加放,赵欣,等.深水钻井液关键技术研究[J]. 石油钻探技术, 2011, 39(2):27-34.

    QIU Zhengsong,XU Jiafang, ZHAO Xin, et al. Research on key technology of deepwater drilling fluid[J]. Petroleum Drilling Technology, 2011, 39(2):27-34.
    [3]
    高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液,2018,35(3):60-67.

    GAO Han, XU Lin, XU Mingbiao, et al. Rheological properties of deepwater water-based constant rheology drilling fluid[J]. Drilling Fluid & Completion Fluid, 2018,35(3):60-67.
    [4]
    邱正松,李照川,黄维安,等. 无黏土相海水基钻井液低温流变特性[J]. 钻井液与完井液,2016,33(1):42-47.

    QIU Zhengsong, LI Zhaochuan, HUANG Wei'an, et al. Low temperature rheological properties of clay free marine based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016,33(1):42-47.
    [5]
    李怀科,罗健生,耿铁,等. 国内外深水钻井液技术进展[J]. 钻井液与完井液, 2015,32(6):85-88.

    LI Huaike, LUO Jiansheng, GENG Tie, et al. Technical progress of deepwater drilling fluid at home and abroad[J]. Drilling Fluid & Completion Fluid, 2015, 32(6):85-88.
    [6]
    杨洪烈,吴娇,汪夯志,等. 海洋深水钻井液体系研究进展[J]. 化学与生物工程, 2019, 36(12):12-16.

    YANG Honglie, WU Jiao, WANG Hangzhi, et al. Research progress of offshore deepwater drilling fluid system[J]. Chemistry & Bioengineering, 2019, 36(12):12-16.
    [7]
    邹星星,李佳旭,刘彦青,等. 深水钻井抗高温水基钻井液体系研究及应用[J]. 钻采工艺,2020,43(2):99-102.

    ZOU Xingxing,LI Jiaxu, LIU Yanqing, et al. Research and application of high temperature resistant water-based drilling fluid system for deep water drilling[J]. Drilling & Production Technology, 2020, 43(2):99-102.
    [8]
    杨双春,宋洪瑞,郭奇,等. 钻井液用流型调节剂的研究进展[J]. 精细化工,2020,37(9):1-15.

    YANG Shuangchun,SONG Hongrui, GUO Qi, et al. Research progress of rheology modifier for drilling fluids[J]. Fine Chemicals,2020,37(9):1-15..
    [9]
    李路,许明标,由福昌,等. 一种深水用白油基恒流变钻井液体系的建立与评价[J]. 当代化工,2017,46(2):268-270.

    LI Lu,XU Mingbiao, YOU Fuchang, et al. Establishment and evaluation of a white oil-based rheostatic drilling fluid system for deep water[J]. Contemporary Chemical Engineering, 2017,46(2):268-270.
    [10]
    黄孟,许林,许洁,等. 水基恒流变钻井液流型调节剂的制备与性能评价[J]. 油田化学,2018,35(2):191-196.

    HUANG Meng, XU Lin,XU Jie, et al. Preparation and performance evaluation of water-based rheostatic drilling fluid flow pattern regulator[J]. Oilfield Chemistry, 2018, 35(2):191-196.
    [11]
    霍宝玉,彭商平,于志纲,等. 一种深水水基无黏土恒流变钻井液体系[J]. 钻井液与完井液,2013,30(2):29-32.

    HUO Baoyu, PENG Shangping,YU Zhigang, et al. A deepwater water-based clay free constant rheology drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2013,30(2):29-32.
    [12]
    王毓. 温度刺激响应型水溶性聚合物的研究进展[J]. 广州化工,2013,41(11):14-17

    ,26. WANG Yu. Research progress of temperature responsive water soluble polymers[J].Guangzhou Chemical Engineering, 2013,41(11):14-17,26.
    [13]
    BAJPAI A K,SHUKLA S K,BHANU S, et al. Responsive polymers in controlled drug delivery[J]. Progress in Polymer Science,2008,33(11):1088-1118.
    [14]
    王伟吉,邱正松,钟汉毅,等. 页岩储层温敏型P (NIPAm-co-AA)/nano-SiO2复合封堵剂的制备及特性[J]. 石油学报,2015,36(3):378-384.

    WANG Weiji, QIU Zhengsong, ZHONG Hanyi, et al. Shale reservoir temperature sensitive P(NIPAM-co-AA)/nano SiO2. Preparation and characteristics of composite plugging agent[J]. Acta Petroleum Sinica, 2015,36(3):378-384.
    [15]
    暴丹,邱正松,赵欣,等. 基于温敏形状记忆特性的智能化堵漏材料研究展望[J]. 钻井液与完井液,2019, 36(3):265-272.

    BAO Dan, QIU Zhengsong, ZHAO Xin, et al. Research prospect of intelligent lost circulation materials based on temperature sensitive shape memory property[J]. Drilling Fluid & Completion Fluid, 2019,36(3):265-272.
    [16]
    徐加放,丁廷稷,张瑞,等. 水基钻井液低温流变性调控用温敏聚合物研制及性能评价[J]. 石油学报, 2018,39(5):597-603.

    XU Jiafang, DING Tingji, ZHANG Rui, et al. Preparation and performance evaluation of thermosensitive polymer for low temperature rheology control of water-based drilling fluid[J]. Acta petroleum Sinica, 2018,39(5):597-603.
    [17]
    DONG SHENGYI, HEYDA JAN, YUAN JIAYIN, et al. Lower critical solution temperature (LCST) phase behaviour of an ionic liquid and its control by supramolecular host-guest interactions[J]. Chem Comm, 2016, 52:7970.
    [18]
    JAIN K, VEDARAJAN R, WATANABE M, et al. Tunable LCST behavior of poly(N-isopropylacrylamide/ionic liquid) copolymers[J]. Polymer Chemistry, 2015,6(38):6819-6825.
    [19]
    王中华. 国内外钻井液技术进展及对钻井液的有关认识[J]. 中外能源,2011,16(1):48-60.

    WANG Zhonghua. Progress of drilling fluid technology at home and abroad and relevant understanding of drilling fluid[J]. Sino Foreign Energy, 2011,16(1):48-60.
    [20]
    李午辰. 国外新型钻井液的研究与应用[J]. 油田化学, 2012,29(3):362-367.

    LI Wuchen. Research and application of foreign new drilling fluid[J]. Oilfield Chemistry, 2012, 29(3):362-367.
    [21]
    岳前升,刘书杰,何保生,等. 深水钻井条件下合成基钻井液流变性[J]. 石油学报,2011, 32(1):145-148.

    YUE Qiansheng, LIU Shujie, HE Baosheng, et al. Rheological properties of synthetic based drilling fluid under deepwater drilling conditions[J]. Acta Petrologica Sinica, 2011, 32(1):145-148.
    [22]
    郑莹, 杜淑娟, 高灿柱, 等. 紫外光解法处理AA-AMPS-TBAM废水[J]. 材料保护,2019,52(10):140-143.

    ZHENG Ying, DU Shujuan, GAO Canzhu, et al. UV photolysis treatment of AA-AMPS-TBAM wastewater[J] Material Protection, 2019, 52(10):140-143.
    [23]
    王妮,刘铭辉,石文婷,等. 浅析海上平台生产废水含油在线监测技术[J]. 石化技术,2019,26(8):99-101.

    WANG Ni, LIU Minghui, SHI Wenting,et al. Analysis of on-line monitoring technology for oil content in offshore platform production wastewater[J]. Petrochemical Technology, 2019, 26(8):99-101.
    [24]
    梁建华,闻德靖,黎美冯,等. 大豆毛油中含磷量检测浊度法研究[J]. 粮食与食品工业,2019, 26(3):70-72.

    LIANG Jianhua, WEN Dejing, LI Meifeng, et al. Study on turbidimetric determination of phosphorus content in soybean crude oil[J]. Cereal & Food Industry, 2019, 26(3):70-72.
    [25]
    王中华. 超高温钻井液降滤失剂P(AMPS-AM-AA)/SMP的研制[J]. 石油钻探技术,2010, 38(3):8-12.

    WANG Zhonghua. Development of ultra-high temperature drilling fluid loss reducer P(AMPS-AM-AA)/SMP[J]. Petroleum Drilling Technology, 2010, 38(3):8-12.
    [26]
    谢斌强,邱正松. 无固相钻井液超高温增黏剂SDKP的结构、性能及应用[J]. 油田化学,2014,31(4):481-487.

    XIE Binqiang, QIU Zhengsong. Structure, performance and application of solid free drilling fluid ultra high temperature viscosity improver SDKP[J]. Oilfield Chemistry, 2014,31(4):481-487.
    [27]
    张碧霞. 基于PNIPAM为温敏嵌段的新型构造共聚物的设计、自组装与生物应用[D]. 陕西师范大学,2014. ZHANG Bixia.Design, self-assembly and biological application of novel structural copolymer based on PNIPAM as temperature sensitive block[D]. Shaanxi Normal University, 2014.
    [28]
    张晓飞,周礼,朱莉,等. 基于NIPAM和HEMA的温敏性共聚物水溶液性能研究[J]. 高分子材料科学与工程,2007,23(3):85-87

    ,91. ZHANG Xiaofei, ZHOU Li, ZHU Li, et al. Study on properties of thermosensitive copolymer aqueous solution based on NIPAM and HEMA[J]. Polymer Materials Science & Engineering, 2007,23(3):85-87,91.
    [29]
    ZHAO XIN,QIU ZHENGSONG,HUANU WEI'AN, et al. Mechanismand method for controlling lowtemperature rheology of water-based drilling fluids in deepwater drilling[J]. Journal of Petroleum Science and Engineering,2017,154:405-416.
    [30]
    鄢捷年. 钻井液工艺学[M]. 东营:中国石油大学出社, 2012:62-66. YAN Jienian. Drilling fluid technology[M]. Dongying:China University of Petroleum Press, 2012:62

    -66.
    [31]
    陶怀志. 抗高温抗盐钙水基钻井液降滤失剂合成、表征与作用机理研究[D]. 西南石油大学,2012. TAO Huaizhi. Synthesis,characterization and action mechanism of high temperature and salt resistant calcium water-based drilling fluid fluid fluid loss reducer[D]. Southwest Petroleum University, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (389) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return