HAN Fuyong, NI Pan, MENG Hailong. Application of Diversion through Broadband Temporary Plugging Multi-Fracture Fracturing Technology in Sulige Gas Field[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 257-263. doi: 10.3969/j.issn.1001-5620.2020.02.021
Citation: HAN Fuyong, NI Pan, MENG Hailong. Application of Diversion through Broadband Temporary Plugging Multi-Fracture Fracturing Technology in Sulige Gas Field[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 257-263. doi: 10.3969/j.issn.1001-5620.2020.02.021

Application of Diversion through Broadband Temporary Plugging Multi-Fracture Fracturing Technology in Sulige Gas Field

doi: 10.3969/j.issn.1001-5620.2020.02.021
  • Received Date: 2019-12-15
  • Publish Date: 2020-04-28
  • To improve the reliability of insulating multi fractures for staged fracturing job in horizontal well completion operation such as open-hole sliding sleeve-packer completion and casing cementing well completion as well as bridge plug segmented multi-cluster fracturing, temporary plugging agents were evaluated in laboratory experiment for their dispersibility, degradability and compression resistance. The diversion through broadband temporary plugging multi-fracture fracturing technology was used in Sulige gas field with good diverting effect. Field application showed that, using diversion through broadband temporary plugging multi-fracture fracturing technology, operation of bridge plug and packer was simplified, number of cable running reduced, operational risk mitigated and operation efficiency improved. Meanwhile, the long-term flow conductivity of fractures can be increased by the connection of multi fractures or fracture network produced by the fracturing operation to gas-rich zones. Compared with offset horizontal wells with similar horizontal lengths and downhole conditions, the open flow rate of gas during well test was increased by 21.1%. After one year of production, the average cumulative gas production of a single well was increased by 3.24×106 m3. The temporary plugging agents and fibers used can be completely degraded in 10 days at reservoir temperature of 90-120℃ in Sulige gas field, fully meeting the requirements of safe and environmentally friendly production.

     

  • [1]
    房好青, 赵兵, 汪文智, 等. 塔河油田靶向压裂预制缝转向技术模拟研究[J]. 石油钻探技术, 2019, 47(5):97-103.

    FANG Haoqing, ZHAO Bing, WANG Wenzhi, et al. Simulation study on the range of diversion in targeted fracturing of prefabricated fractures in the tahe oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5):97-103.
    [2]
    陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版), 2013, 37(5):88-94. CHEN Mian.Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J].Journal of China University of Petroleum(Edition of Natural Science), 2013, 37(5):88-94.
    [3]
    田守嶒, 陈立强, 盛茂, 等. 水力喷射分段压裂裂缝起裂模型研究[J]. 石油钻探技术, 2015, 43(5):31-36.

    TIAN Shoufu, CHEN Liqiang, SHENG Mao, et al. Modeling of fracture initiation for staged hydraulic jetting fracturing[J]. Petroleum Drilling Techniques, 2015, 43(5):31-36.
    [4]
    刘拯民. 大庆油田转向压裂工艺技术研究[J]. 化学工程与装备, 2019(4):50-51. LIU Zhengmin. Research on turning fracturing technology in Daqing oilfield[J].Chemical Engineering & Equipment, 2019

    (4):50-51.
    [5]
    赵明伟, 高志宾, 戴彩丽, 等. 油田转向压裂用暂堵剂研究进展[J]. 油田化学, 2018, 35(3):538-544.

    ZHAO Mingwei, GAO Zhibin, DAI Caili, et al. Advancement of temporary plugging agent for fracturing in oilfield[J].Oilfield Chemistry, 2018, 35(3):538-544.
    [6]
    尹俊禄, 刘欢, 池晓明, 等. 可降解纤维暂堵转向压裂技术的室内研究及现场试验[J]. 天然气勘探与开发, 2017, 40(3):113-119.

    YIN Junlu, LIU Huan, CHI Xiaoming, et al. Experimental study and field test of degradable fiber based temporary plugging and diversion fracturing technology[J]. Natural Gas Exploration and Development, 2017, 40(3):113-119.
    [7]
    杨建委, 郑波. 纤维暂堵转向酸压技术研究及其现场试验[J]. 石油化工应用, 2013, 32(12):34-38.

    YANG Jianwei, ZHENG Bo. Study and field test of the fiber bridging acid fracturing technology[J]. Petrochemical Industry Application, 2013, 32(12):34-38.
    [8]
    孙彬峰, 刘洪涛, 刘欣, 等. 多级暂堵转向重复压裂技术探索及在河南油田的应用[J]. 石油地质与工程, 2018, 32(5):107-109.

    SUN Binfeng, LIU Hongtao, LIU Xin, et al. Exploration and application of multi-stage temporary plugging steering and repetitive fracturing technology in Henan oilfield[J]. Petroleum Geology and Engineering, 2018, 32(5):107-109.
    [9]
    孙兆海. 低渗透油田扶余油层垂直裂缝缝内转向压裂增产试验[J]. 化学工程与装备, 2017(6):84-86. Sun Zhaohai. Production increase test of turning fracture in vertical fracture of Fuyu reservoir in low permeability oilfield[J]. Chemical Engineering & Equipment, 2017

    (6):84-86.
    [10]
    王刚. 低渗透油田缝内转向压裂增产技术研究与应用[J]. 化学工程与装备, 2017(4):63-65. WANG Gang. Research and application of in-fracture directional fracturing stimulation technology in low permeability oilfields[J]. Chemical Engineering & Equipment, 2017

    (4):63-65.
    [11]
    陈天应, 彭超, 张鹏名, 等. 苏里格气田转向压裂技术优化及应用[J]. 辽宁化工, 2019, 48(2):163-165.

    CHEN Tianying, PENG Chao, ZHANG Pengming, et al. Optimization and application of steering fracturing technology in Sulige gas field[J]. Liaoning Chemical Industry, 2019, 48(2):163-165.
    [12]
    丁邦春, 邱毅, 范利群, 等. 利用测井资料评价暂堵转向工艺在苏里格气田的应用效果[J]. 石油管材与仪器, 2018, 4(5):83-86.

    DING Bangchun, QIU Yi, FAN Liqun, et al. Application effect evaluation of temporary plugging and fracturing technology in Sulige gas field by logging data[J]. Petroleum Instruments, 2018, 4(5):83-86.
    [13]
    杨战伟, 段瑶瑶, 王丽伟, 等. 苏里格气田致密气藏压裂改造技术研究应用[J]. 石油地质与工程, 2018, 32(6):99-102.

    YANG Zhanwei, DUAN Yaoyao, WANG Liwei, et al. Sulige gas field fracturing technology research and application[J].Petroleum Geology and Engineering, 2018, 32(6):99-102.
    [14]
    李进步, 白建文, 朱李安, 等. 苏里格气田致密砂岩气藏体积压裂技术与实践[J]. 天然气工业, 2013, 33(9):65-69.

    LI Jinbu, BAI Jianwen, ZHU Li'an, et al. Volume fracturing and its practices in Sulige tight sandstone gas reservoirs, Ordos Basin[J]. Natural Gas Industry, 2013, 33(9):65-69.
    [15]
    李宪文, 张矿生, 樊凤玲, 等. 鄂尔多斯盆地低压致密油层体积压裂探索研究及试验[J]. 石油天然气学报, 2013, 35(3):142-146

    , 152. LI Xianwen, ZHANG Kuangsheng, FAN Fengling, et al. Exploration and test of volume fracturing of low pressure tight reservoirs in Ordos Basin[J]. Journal of Oil and Gas Technology, 2013, 35(3):142-146, 152.
    [16]
    李学垒. 苏里格"三低"油气藏水平井压裂工艺研究与应用[D]. 黑龙江大庆:东北石油大学, 2017. LI Xuelei. Research and application of horizontal well fracturing technology for "Three low" oil and gas reservoir in Sulige[D]. Heilongjiang Daqing:Northeast Petroleum University, 2017.
  • Relative Articles

    [1]TIAN Zhiyuan, QI Duo, WANG Haibo, ZHANG Xinpeng, GUO Baohua, XU Jun. Development of a Biodegradable Polymer Temporary Plugging Agent for Drilling Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2025, 42(1): 74-81. doi: 10.12358/j.issn.1001-5620.2025.01.008
    [2]LIU Yi, YU Chenglin, LI Yunzi, JIANG Ximei, YU Yangyang, WU Jun, LIU Jing. Preparation and Evaluation of a Temporary Plugging Organosilicon Diverting Agent for Fracturing Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2025, 42(2): 275-282. doi: 10.12358/j.issn.1001-5620.2025.02.016
    [3]DONG Xiaoqiang, JIN Bingyao, LIU Yuhan, QIAN Xiaolin, YU Fuchun. Experimental Study on Degradable PGA as Temporary Plugging Agent in Drill-in Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(2): 166-171. doi: 10.12358/j.issn.1001-5620.2024.02.004
    [4]WANG Minghui, LI Jin, HAN Yaotu, LI Jiling, LIU Huixin. A New Technology for Evaluating Job Quality of Well Cementing Based on Ultrasonic Lamb Wave and Its Application[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(4): 519-526. doi: 10.12358/j.issn.1001-5620.2023.04.015
    [5]GAN Lin, QI Guodong, LI Zhaochuan, FU Yueying, WANG Hongke, JIN Jianxia. Study on Degradable Fiber Fracturing Fluid and Its Application in Sulige Gas Field[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 248-252. doi: 10.12358/j.issn.1001-5620.2022.02.019
    [6]LIU Yi, YANG Hui, WU Zuohao. Study and Application of Self-diverting Fracturing Fluid Containing Highly Deformable Temporary Plugging Agents[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(1): 114-120. doi: 10.12358/j.issn.1001-5620.2022.01.019
    [7]YE Lian, QIU Zhengsong, CHEN Xiaohua, ZHONG Hanyi, ZHAO Xin, BAO Dan. Evaluation on the Ability of a New Self-Degrading Lost Circulation Agent to Plug Fractures and Protect Reservoirs[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(6): 731-736. doi: 10.3969/j.issn.1001-5620.2020.06.009
    [8]YOU Lijun, CHEN Yang, KANG Yili, YAN Xiaopeng, WANG Yijun. Productivity Index Method for Experimental Evaluation of Working Fluid Damage in Low Permeability Gas Reservoir[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(5): 620-625. doi: 10.3969/j.issn.1001-5620.2020.05.014
    [9]FANG Enlou, LI Haoran, ZHANG Hao, CHEN Xiaohua, LUO Yuwei, GU Jun. Development and Performance Evaluation of a Low Temperature Low Density Solidifiable Spacer Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 86-92. doi: 10.3969/j.issn.1001-5620.2020.01.014
    [10]LIU Yang, CHEN Min, SHI Fangfang, LI Yinxue, XIAN Ming. Study and Application of a Technology for Evaluating Pressure Loss of Cement Plug[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(6): 749-753. doi: 10.3969/j.issn.1001-5620.2019.06.016
    [11]LI Zhong, WU Zhiming, XIANG Xingjin, YAN Bangchuan, YU Yi, LIU Zhiqin. Study and Performance Evaluation of an “Integrated” Insulation Test Fluid Using in Deep-water Well Test[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(4): 517-521. doi: 10.3969/j.issn.1001-5620.2019.04.022
    [12]SONG Jifeng, LIANG Yukai, ZHOU Yuxia, CHENG Liming, JIA Hui. Study and Application of Self-degrading Temporary Plugging Fluid for Offshore Low Permeability Reservoirs[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 73-76. doi: 10.3969/j.issn.1001-5620.2018.04.013
    [13]WANG Jinfen, GENG Dongshi, YI Xiaoling, MA Junhan, JIANG Luming, HE Lipeng. Study on the Evaluating Standard of Drilling Bentonite[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(6): 37-41. doi: 10.3969/j.issn.1001-5620.2018.06.007
    [14]JIANG Wei, GUAN Baoshan, LI Yang, CAI Bo. A New Water Soluble Temporary Plugging Agent and its Temporary Plugging and Diverting Effects in Re-fracturing[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(6): 100-104. doi: 10.3969/j.issn.1001-5620.2017.06.019
    [15]ZHENG Lihui, CUI Jinbang, NIE Shuaishuai, LIU Bin, FU Yuwei, LI Zongyuan. Temporary Plugging Diverting Test with Fuzzy Ball Fluids in Non-Water Producing Coal Beds in Re-fracturing Well Zheng-X[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(5): 103-108. doi: 10.3969/j.issn.1001-5620.2016.05.022
    [16]KONG Yong, YANG Xiaohua, XU Jiang, LIU Guichuan, WANG Haibo, ZHANG Guo. Synthesis and Evaluation of a High Temperature Inhibitive Additive[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(2): 17-21. doi: 10.3969/j.issn.1001-5620.2016.02.004
    [17]ZHENG Lihui, WENG Dingwei. Study on Repeating Fracturing while Causing No Damage to Original Fractures[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(3): 76-78. doi: 10.3969/j.issn.1001-5620.2015.03.021
    [18]XIE Chengbin, LU Haichuan, LI Yang, ZHENG Huikai, XING Xiuping, SHANG Guangyuan, SUN Xiaojie. Study on Evaluation of Thixotropy of Cement Slurry[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(6): 57-60. doi: 10.3969/j.issn.1001-5620.2015.06.015
    [19]YU Weichu, DING Fei, WU Jun. Evaluation System for Slick-water Fracturing Fluid Used in Shale Gas Well[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(3): 90-92. doi: 10.3969/j.issn.1001-5620.2015.03.025
  • Cited by

    Periodical cited type(10)

    1. 缪尉杰. 基于无限级滑套的水力裂缝演化特征研究. 非常规油气. 2025(02): 112-119 .
    2. 刘彝,余成林,李云子,姜喜梅,于洋洋,吴均,刘京. 压裂用有机硅暂堵转向剂的制备及性能评价. 钻井液与完井液. 2025(02): 275-282 . 本站查看
    3. 赵祚培,缪尉杰,邱玲. 资阳须五段高密度体积压裂技术优化. 油气井测试. 2023(04): 44-49 .
    4. 孔祥伟,许洪星,张晓辉,赵长德. 低渗透薄互层油藏动态多级暂堵压裂技术优化. 钻采工艺. 2023(06): 66-71 .
    5. 吴凯,付鹏,于世虎. 苏里格二三类储层压裂配套技术优化与应用. 石油化工应用. 2022(05): 45-50 .
    6. 林永茂,缪尉杰,刘林,王兴文,邱玲. 中江气田致密砂岩体积压裂应用. 西南石油大学学报(自然科学版). 2022(03): 148-156 .
    7. 武月荣,王坤,黄永章. 层间暂堵控流压裂技术在靖边气田的探索性应用. 石油化工应用. 2022(10): 38-41 .
    8. 李建辉,李想,岳明,达引朋,董奇,常笃. 长庆油田宽带压裂储层产能模型及渗流规律研究. 石油钻探技术. 2022(06): 112-119 .
    9. 周晓峰,王振军,黄卓,史经民,陆天瑜,赵新礼. 长庆姬塬油田宽带压裂参数优化数值模拟与应用. 钻采工艺. 2021(03): 47-51 .
    10. 熊琪,李黎,兰正凯,张亮. 海上特低渗油藏宽带压裂数值模拟研究. 钻采工艺. 2021(05): 50-53 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.6 %FULLTEXT: 22.6 %META: 74.8 %META: 74.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.3 %其他: 2.3 %其他: 0.3 %其他: 0.3 %Algeria: 0.9 %Algeria: 0.9 %China: 1.4 %China: 1.4 %上海: 19.5 %上海: 19.5 %东营: 0.1 %东营: 0.1 %儋州: 0.1 %儋州: 0.1 %克拉玛依: 0.3 %克拉玛依: 0.3 %北京: 3.4 %北京: 3.4 %合肥: 0.6 %合肥: 0.6 %咸阳: 0.1 %咸阳: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %喀山: 0.2 %喀山: 0.2 %大同: 0.1 %大同: 0.1 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %弗吉: 0.1 %弗吉: 0.1 %张家口: 2.2 %张家口: 2.2 %成都: 0.7 %成都: 0.7 %晋城: 0.2 %晋城: 0.2 %杭州: 0.1 %杭州: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %盘锦: 0.1 %盘锦: 0.1 %石家庄: 0.1 %石家庄: 0.1 %自贡: 0.2 %自贡: 0.2 %芒廷维尤: 36.4 %芒廷维尤: 36.4 %芝加哥: 0.1 %芝加哥: 0.1 %荆州: 0.2 %荆州: 0.2 %西宁: 22.1 %西宁: 22.1 %西安: 0.5 %西安: 0.5 %西雅图: 0.1 %西雅图: 0.1 %许昌: 0.1 %许昌: 0.1 %贵阳: 1.0 %贵阳: 1.0 %达州: 0.2 %达州: 0.2 %运城: 1.0 %运城: 1.0 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.1 %邯郸: 0.1 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.2 %重庆: 0.2 %锡林郭勒盟: 0.1 %锡林郭勒盟: 0.1 %青岛: 0.2 %青岛: 0.2 %驻马店: 3.4 %驻马店: 3.4 %其他其他AlgeriaChina上海东营儋州克拉玛依北京合肥咸阳哥伦布喀山大同天津宣城弗吉张家口成都晋城杭州武汉沈阳济南盘锦石家庄自贡芒廷维尤芝加哥荆州西宁西安西雅图许昌贵阳达州运城遵义邯郸鄂州重庆锡林郭勒盟青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (791) PDF downloads(159) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return