Volume 37 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
LIU Huibin, LI Jianhua, PANG Heshan, ZHENG Huikai, LIU Dongqing, SUN Xinghua, SONG Weibin. Ultra-high Temperature Cement Slurry for Cementing Well GR1 Penetrating Hot Dry Rock Formations in Gonghe Basin, Qinghai[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 202-208. doi: 10.3969/j.issn.1001-5620.2020.02.012
Citation: LIU Huibin, LI Jianhua, PANG Heshan, ZHENG Huikai, LIU Dongqing, SUN Xinghua, SONG Weibin. Ultra-high Temperature Cement Slurry for Cementing Well GR1 Penetrating Hot Dry Rock Formations in Gonghe Basin, Qinghai[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 202-208. doi: 10.3969/j.issn.1001-5620.2020.02.012

Ultra-high Temperature Cement Slurry for Cementing Well GR1 Penetrating Hot Dry Rock Formations in Gonghe Basin, Qinghai

doi: 10.3969/j.issn.1001-5620.2020.02.012
  • Received Date: 2019-11-24
  • Publish Date: 2020-04-28
  • The job quality of well cementing is the key factor affecting the borehole quality of a well penetrating hot dry rock formations. The major technical difficulties in cementing the wells penetrating hot dry rock formations in the Gonghe Basin in Qinghai were determined by studying the geological characteristics and the conditions for the hot dry rock to exist. An ultra-high temperature cement slurry for cementing the wells was formulated with a high temperature retarder BCR-320L and a high temperature filter loss reducer BXF-200L (AF), based on the investigation of strength decline mechanisms of the set cement with different concentrations of silica powder. Laboratory experimental results showed that the cement slurry can be used to cement wells at circulation temperature of 200℃. The cement slurry has good rheology and adjustable thickening time. The strength of the set cement does not decline at 200℃, and the compressive strength of the cement slurry after aging 72 h is 44.1 MPa. This cement slurry has been successfully used in cementing the well GR1 which penetrated hot dry rock formations in the Gonghe Basin in Qinghai. The quality of the cementing job was excellent. This cementing technology has provided a reference for subsequent hot dry rock well cementing.

     

  • loading
  • [1]
    汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31.

    WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32):25-31.
    [2]
    TESTER J W, ANDERSON B J, BATCHELOR A S, et al. The future of geothermal energy-impact of enhanced geothermal systems(EGS)on the United States in the 21th Century[R]. Boston:Massachusetts Institute of Technology, 2006.
    [3]
    许天福,张延军,曾昭发,等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32):42-45.

    XU Tianfu, ZHANG Yanjun, ZENG Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012, 30(32):42-45.
    [4]
    蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5):807-811.

    LIN Wenjing, LIU Zhiming, MA Feng, et al. An estimation of HDR resources in China's mainland[J]. Acta Geoscientica Sinica, 2012, 33(5):807-811.
    [5]
    POLSKY Y, CAPUANO L J, FINGER J, et al. Enhanced geothermal systems(EGS) well construction technology evaluation report[J]. Physical Review D, 2008, 17(10):2529-2551.
    [6]
    张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6):1087-1102.

    ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Chinese Geology, 2018, 45(6):1087-1102.
    [7]
    梁文利. 干热岩钻井液技术新进展[J]. 钻井液与完井液, 2018, 35(4):7-13.

    LIANG Wenli.Progress in study on drilling fluid technology for hot dry rock drilling[J].Drilling Fluid & Completion Fluid, 2018, 35(4):7-13.
    [8]
    郑宇轩, 单文军, 赵长亮, 等. 青海共和干热岩GR1井钻井工艺技术[J]. 地质与勘探, 2018, 54(5):1038-1045.

    ZHENG Yuxuan, SHAN Wenjun, ZHAO Changliang, et al. The drilling technology for the GR1 well in hotdry rock of Gonghe, Qinghai province[J]. Geology and Prospecting, 2018, 54(5):1038-1045.
    [9]
    符军放. 掺硅粉高水灰比水泥石高温强度衰退现象分析[J]. 钻井液与完井液, 2017, 34(1):112-115.

    FU Junfang.Analysis of high temperature strength retrogression of high water/cement ratio set cement with silica powder[J].Drilling Fluid & Completion Fluid, 2017, 34(1):112-115.
    [10]
    路飞飞, 李斐, 田娜娟, 等. 复合加砂抗高温防衰退水泥浆体系[J]. 钻井液与完井液, 2017, 34(4):85-89.

    LU Feifei, LI Fei, TIAN Najuan, et al.High temperature anti strength retrogression cement slurry with compounded silica powder[J].Drilling Fluid & Completion Fluid, 2017, 34(4):85-89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1396) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return