Volume 37 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
LU Yunhu, XIAO Xianheng, ZHAO Lin, JIN Yan, CHEN Mian. The Effect of Temperature on Stability of Borehole Wall in Ultra-Deep Fractured Formation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 160-167. doi: 10.3969/j.issn.1001-5620.2020.02.005
Citation: LU Yunhu, XIAO Xianheng, ZHAO Lin, JIN Yan, CHEN Mian. The Effect of Temperature on Stability of Borehole Wall in Ultra-Deep Fractured Formation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 160-167. doi: 10.3969/j.issn.1001-5620.2020.02.005

The Effect of Temperature on Stability of Borehole Wall in Ultra-Deep Fractured Formation

doi: 10.3969/j.issn.1001-5620.2020.02.005
  • Received Date: 2019-12-03
  • Publish Date: 2020-04-28
  • Formation temperature plays a significant role in stability of the surrounding rock around the borehole wall, especially for the ultra-deep (> 6000 m) fractured reservoirs. Traditional prediction model on collapse pressure that considers temperature effect mainly applies to intact formation, whereas few works have been done to investigate the effect of temperature on collapse pressure of fractured formation. To address this problem, in this study, we first determined the induced stress field generated by temperature variation through Duhame's principle. Second, stress distribution on fracture surface was obtained with consideration of coordinate transformation and the coupling of fracture-seepage field and temperature field. Third, we characterized the effect of temperature on wellbore stability by incorporating the established stress field on fracture surface into the rock failure criterion. The results show that under the same stress and fracture incidence conditions, increasing temperature aggrandizes the extent of formation collapse. This result is contrary to the traditional conclusion that the temperature-reduction-induced collapse pressure drop may strengthen wellbore stability. Moreover, wellbore stability is sensitive to the variation of fracture incidence when wellbore pressure is constant. Furthermore, for the ultra-deep fractured formation, the risk of instability may increase when surrounding rock temperature decreases as a result of mud circulation. Our works highlight the importance of temperature on well stability, and shed light on the design of appropriate drilling mud to prevent well from collapsing.

     

  • loading
  • [1]
    张光亚, 马锋, 梁英波, 等. 全球深层油气勘探领域及理论技术进展[J]. 石油学报, 2015, 36(9):1156-1166.

    ZHANG Guangya, MA Feng, LIANG Yingbo, et al. Domain and theory-technology progress of global deep oil & gas exploration[J]. Acta Petrolei Sinica, 2015, 36(9):1156-1166.
    [2]
    汪海阁, 葛云华, 石林. 深井超深井钻完井技术现状、挑战和"十三五"发展方向[J]. 天然气工业, 2017, 37(4):1-8.

    WANG Haige, GE Yunhua, SHI Lin. Technologies in deep and ultra-deep well drilling:Present status, challenges and future trend in the 13th Five-Year Plan period(2016-2020)[J]. Natural Gas Industry, 2017, 37(4):1-8.
    [3]
    滕学清, 陈勉, 杨沛, 等. 库车前陆盆地超深井全井筒提速技术[J]. 中国石油勘探, 2016, 21(1):76-88.

    TENG Xueqing, CHEN Mian, YANG Pei, et al. Whole well ROP enhancement technology for super-deep wells in Kuqa foreland basin[J]. China Petroleum Exploration, 2016, 21(1):76-88.
    [4]
    陈勉. 我国深层岩石力学研究及在石油工程中的应用[J]. 岩石力学与工程学报, 2004, 23(14):2455-2462.

    CHEN Mian. Review of study on rock mechanics at great depth and its applications to petroleum engineering of China[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14):2455-2462.
    [5]
    林永学, 王伟吉, 金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3):113-120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field[J]. Petroleum Drilling Technology, 2019, 47(3):113-120.
    [6]
    金衍, 陈勉, 陈治喜, 等. 弱面地层的直井井壁稳定力学模型[J]. 钻采工艺, 1999, 22(3):13-14.

    JIN Yan, CHEN Mian, CHEN Zhixi, et al. Mechanics model of sidewall stability of straight wells drilled through weakly consolidated formations[J]. Drilling & Production Technology, 1999, 22(3):13-14.
    [7]
    刘志远, 陈勉, 金衍, 等. 多弱面地层水平井裸眼井壁垮塌量计算模型[J]. 石油勘探与开发, 2014, 41(1):102-107.

    LIU Zhiyuan, CHEN Mian, JIN Yan, et al. Calculation model for bore-hole collapse volume of a horizontal openhole in multiple-weak-plane formation[J]. Petroleum Exploration and Development, 2014, 41(1):102-107.
    [8]
    LU Y H, CHEN M, JIN Y, et al. Influence of porous flow on wellbore stability for an inclined well with weak plane formation[J]. Petroleum Science and Technology, 2013, 31(6):616-624.
    [9]
    LU Y H, CHEN M, JIN Y, et al. A mechanical model of borehole stability for weak plane formation under porous flow[J]. Petroleum Science and Technology, 2012,30(15):1629-1638.
    [10]
    MCLELLAN P J. Assessing the risk of wellbore instability in horizontal and inclined wells[J].Journal of Canadian Petroleum Technology, 1996, 35(5):113-115.
    [11]
    邓金根, 王金凤, 周建良. 渗透性地层井壁坍塌压力和破裂压力的计算模型[J]. 岩石力学与工程学报, 2002, 21(S1):2069-2072.

    DENG Jingen, WANG Jinfeng, ZHOU Jianliang. Calculation model of wellbore collapse pressure and fracture pressure in permeable formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(S1):2069-2072
    [12]
    马天寿, 陈平. 页岩地层中孔隙热弹性井眼稳定力学模型[J]. 岩石力学与工程学报, 2015, 34(S2):3613-3623.

    MA Tianshou, CHEN Ping. Porothermoelastic mechanical model of wellbore stability in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2):3613-3623.
    [13]
    陈新, 杨强, 何满潮, 等. 考虑深部岩体各向异性强度的井壁稳定分析[J]. 岩石力学与工程学报, 2005, 24(16):2882-2888.

    CHEN Xin, YANG Qiang, HE Manchao, et al. Stability analysis of wellbore based on anisotropic strength criterion for deep jointed rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16):2882-2888.
    [14]
    LIU Ming, JIN Yan, LU Yunhu, et al. Oil-based critical mud weight window analyses in HTHP fractured tight formation[J].Journal of Petroleum Science and Engineering, 2015(135):750-764.
    [15]
    李嗣贵, 邓金根, 李明志. 节理破碎地层井壁稳定的离散元分析[J]. 岩石力学与工程学报, 2002, 21(S1):2139-2143.

    LI Sigui, DENG Jingen, LI Mingzhi. Discrete element analysis of wellbore stability in fractured joint formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(S1):2139-2143.
    [16]
    YAMAMOTO K, SHIOYA Y, URYU N. Discrete element approach for the wellbore instability of laminated and fissured rocks[C]. SPE/ISRM Rock Mechanics Conference, Society of Petroleum Engineers, 2002.
    [17]
    ZHAO Haifeng, LI Yawei, CHEN Mian. Technical note discrete element model for coal wellbore stability[J]. International Journal of Rock Mechanics and Mining Sciences, 2012(54):43-46.
    [18]
    张培丰. 地层温度对科学超深井井壁稳定的影响[J]. 探矿工程:岩土钻掘工程, 2011, 38(10):1-5.

    ZHANG Peifeng. Effect of the formation temperature on the hole-wall stability in ultra-deep scientific drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2011, 38(10):1-5.
    [19]
    蔚宝华, 卢晓峰, 王炳印, 等. 高温井地层温度变化对井壁稳定性影响规律研究[J]. 钻井液与完井液, 2004, 21(6):15-18.

    YU Baohua, LU Xiaofeng, WANG Bingyin, et al. Law of temperature influence on weilbore stability in hot well[J]. Drilling Fluid & Completion Fluid, 2004, 21(6):15-18.
    [20]
    朱忠喜, 杜洪韬, 张文波, 等. 气体钻井井壁热应力及井壁稳定性分析[J]. 钻采工艺, 2017, 40(4):25-27.

    ZHU Zhongxi, DU Hongtao, ZHANG Wenbo, et al. Analysis of thermal stress on wellbore and wellbore stability during gas drilling[J]. Drilling and Production Technology, 2017, 40(4):25-27.
    [21]
    贾利春, 陈东, 黄兵. 温度对岩石力学特性及井壁稳定性的影响[J]. 钻采工艺, 2017, 40(5):15-18.

    JIA Lichun, CHEN Dong, HUANG Bing, et al. Effects of temperature on rocks mechanics and wellbore stability[J]. Drilling & Production Technology, 2017, 40(5):15-18.
    [22]
    张健, 卢运虎. 超深井筒温度分布及其对围岩力学性质的影响研究[J]. 岩石力学与工程学报,2019,38(S1):2831-2839.

    ZHANG Jian, LU Yunhu. Study on temperature distribution of ultra-deep wellbore and its effect on mechanical properties of surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1):2831-2839.
    [23]
    ZHANG Yayun, TAN Peng, GAO Jiajia, et al. Effect of local thermal non-equilibrium on thermoporoelastic response of a borehole in dual-porosity media[J].Applied thermal engineering:Design, processes, equipment, economics, 2018(142):166-183.
    [24]
    陈勉, 金衍, 张广清. 石油工程岩石力学[M]. 科学出版社, 2008. CHEN Mian, JIN Yan, ZHANG Guangqing. Petro engineering rock mechanics[M]. Science Press, 2008.
    [25]
    金衍, 陈勉. 井壁稳定力学[M]. 科学出版社, 2012. JIN Yan, CHEN Mian. Wellbore stability mechanics[M]. Science Press, 2012.
    [26]
    LIANG Chuan, CHEN Mian, JIN Yan, et al. Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow[J]. Journal of Natural Gas Science and Engineering, 2014, 21:364-378.
    [27]
    卢运虎, 金衍, 陈勉, 等. 高温高压耦合下含不同倾角充填缝砂岩的强度实验研究[J]. 岩石力学与工程学报, 2019, 38(S1):2668-2679.

    LU Yunhu, JIN Yan, CHEN Mian, et al. Experimental study on the strength of sandstone filled with different dip angles under the coupling of high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1):2668-2679.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (498) PDF downloads(175) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return