Volume 37 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
ZHANG Xin, WEI Haoguang, LIU Jian, DING Shidong, ZHOU Shiming. Study on Particle Size Optimization and Performance of a Silica Water Suspension as Anti Gas Channeling Agent at 180 ℃[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 97-102. doi: 10.3969/j.issn.1001-5620.2020.01.016
Citation: ZHANG Xin, WEI Haoguang, LIU Jian, DING Shidong, ZHOU Shiming. Study on Particle Size Optimization and Performance of a Silica Water Suspension as Anti Gas Channeling Agent at 180 ℃[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 97-102. doi: 10.3969/j.issn.1001-5620.2020.01.016

Study on Particle Size Optimization and Performance of a Silica Water Suspension as Anti Gas Channeling Agent at 180 ℃

doi: 10.3969/j.issn.1001-5620.2020.01.016
  • Received Date: 2019-08-08
  • Publish Date: 2020-02-28
  • To improve the gas-channeling prevention performance of regular silica water suspension in ultra-deep well drilling, the silica suspension was treated with a white carbon black and grounded with sand mill. The particle size of the solids in the suspension was optimized and the properties of the suspension evaluated in laboratory experiment. Basic performance evaluation was performed to evaluate the compatibility of the optimized silica water suspension with cement slurries. Other tests such as compressive strength test, porosity measuring and cementing strength test were performed to evaluate the gas-channeling prevention performance of the silica water suspension. Using XRD and SEM, the gas-channeling prevention mechanisms of the silica water suspension in cement slurries at 180 ℃ were analyzed and explained. It was found in the experiment that the average particle size of the silica was 300 nm, and was compatible very well with cement slurries. Cement slurries treated with 15% silica water suspension had compressive strength that can sustain for a very long time. The porosity of the set cement was less than 0.02 mD and the cementing strength was greater than 4 MPa. The amount of calcium hydroxide produced during hydration of the cement was greatly reduced and the micro structure of the set cement turned from massy to strip-shaped and fibrous. The study showed that the anti gas channeling agent formulated with particlesize optimized silica-water suspension was suitable for use in cement slurries commonly in use and performed better than regular silica water suspension.

     

  • loading
  • [1]
    马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 2018, 45(4):561-574.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. Cognition and practice of shale gas exploration and development theory in China[J]. Petroleum Exploration and Development, 2018, 45(4):561-574.
    [2]
    魏浩光,张鑫,丁士东,等.PEG对纳米硅水泥浆触变性改善的研究[J].钻井液与完井液, 2018, 35(4):82-86.

    WEI Haoguang, ZHANG Xin, DING Shidong, et al. PEG study on thixotropy improvement of nano silicon cement slurry[J].Drilling Fluid&Completion Fluid, 2018, 35(4):82-86.
    [3]
    康毅力,王凯成,许成元,等.深井超深井钻井堵漏材料高温老化性能评价[J].石油学报, 2019, 40(2):215-223.

    KANG Yili, WANG Kaicheng, XU Chengyuan, et al. Evaluation of high temperature aging performance of drilling materials for deep well drilling in deep wells[J]. Acta Petrolei Sinica, 2019, 40(2):215-223.
    [4]
    SINGH L P, KARADE S R, BHATTACHARYYA S K, et al. Beneficial role of nanosilica in cement based materials-A review[J]. Construction and Building Materials, 2013, 47(5):1069-1077.
    [5]
    ALY M, HASHMI MSJ, OLABI AG, et al. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar[J]. Materials&Design, 2012, 33(none):127-135.
    [6]
    BJORNSTROM J, MARTINELLI A, MATIC A, et al. Accelerating effects of colloidal nano-silica for beneficial calci-um-silicate-hydrate formation in cement[J]. Chemical Physics Letters, 2004, 392(1-3):242-248.
    [7]
    CHOOLAEI M, RASHIDI AM, ARDJMAND M, et al. The effect of nanosilica on the physical properties of oil well cement[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure And Processing, 2012, 538(none):288-294.
    [8]
    JO BW, KIM CH, TAE GH, et al. Characteristics of cement mortar with nano-SiO2 particles[J]. Construction and Building Materials, 2007, 21(6):1351-1355.
    [9]
    RICHARDSON IG. Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of C-S-H:applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, Portland cement, and blends of Portland cement with blast-fumace slag, metakaolin, or silica fume[J]. Cement and Concrete Research, 2004, 34(9):1733-1777.
    [10]
    PATIL RC, DESHPANDE A. Use of Nanomaterials in Cementing Applications[J]. Society of Petroleum Engineers, DOI: 10.2118/155607-MS.
    [11]
    YE Q, ZHANG ZN, KONG DY, et al. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume[J]. Construction and Building Materials, 2007, 21(3):539-545.
    [12]
    LIU R, XIAO HG, LIU JL, et al. Improving the microstructure of ITZ and reducing the permeability of concrete with various water/cement ratios using nanosilica[J]. Journal of Materials Science, 2019, 54(1):444-456.
    [13]
    王成文,陈新,周伟,等.纳米SiO2溶胶缓解油井水泥高温强度衰退的作用机理[J].天然气工业, 2019, 39(3):72-79.

    WANG Chengwen, CHEN Xin, ZHOU Wei, et al. The mechanism of nano-SiO2 sols in relieving the high temperature strength degradation of oil well cement[J]. Natural Gas Industry, 2019, 39(3):72-79.
    [14]
    QALANDARI R, AGHAJANPOUR A, KHATIBI S. A novel nanosilica-based solution for enhancing mechanical and rheological properties of oil well cement[J]. Society of Petroleum Engineers, DOI: 10.2118/192031-MS.
    [15]
    HOU PK, CHENG X, QIAN JS, et al. Effects and mechanisms of surface treatment of hardened cementbased materials with colloidal nanoSiO2 and its precursor[J]. Construction and Building Materials, 2014, 53:66-73.
    [16]
    GU Y, RAN QP, SHU X, et al. Synthesis of nanoSiO2@PCE core-shell nanoparticles and its effect on cement hydration at early age[J]. Construction and Building Materials, 2016, 114:673-680.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (554) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return