Volume 36 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
LIU Jiankun, XIE Bobo, WU Chunfang, JIANG Tingxue, SUI Shiyuan, SHEN Ziqi. Experimental study and application for the conductivity of proppant in multi-scale volume fracturing[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 646-653. doi: 10.3969/j.issn.1001-5620.2019.05.021
Citation: LIU Jiankun, XIE Bobo, WU Chunfang, JIANG Tingxue, SUI Shiyuan, SHEN Ziqi. Experimental study and application for the conductivity of proppant in multi-scale volume fracturing[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 646-653. doi: 10.3969/j.issn.1001-5620.2019.05.021

Experimental study and application for the conductivity of proppant in multi-scale volume fracturing

doi: 10.3969/j.issn.1001-5620.2019.05.021
  • Received Date: 2019-05-07
  • Publish Date: 2019-10-30
  • The effective conductivity of fracture is the main parameter for evaluating the effect of fracturing construction, and it is also one of the most important factors affecting the effect of fracturing. We designed a multi-scale fracture conductivity experimental method, and used a method of single particle size and combined particle size placement to studied the effects of factors such as closure pressure, particle size combination, sanding concentration and stress cycling on the proppant conductivity in main fracture and branching fracture.The experimental results show that:As the closing pressure increases, the difference in the conductivity of the large-size proppant and the small-sized proppant gradually decreases, and the conductivity of the proppant in the main fracture and the branch fracture gradually decreases, and this reduction trend has an obvious turning point.Under the combined particle size placement conditions, there is an optimal proppant combination both in the main fracture and the branch fracture.The higher the sediment concentration of the proppant in the main fracture and the branch fracture, the higher the conductivity will be;As the closing pressure increases, the difference of the conductivity between the high-concentration sanding and the low-concentration sanding becomes smaller.The effect of stress cycling on the proppant conductivity is irreversible.The field application shows that under the premise of meeting the fracturing process requirements, it can effectively improve the fracture conductivity and the post-pressing output by usingthe proppant combination method and the reasonable optimization of the sand adding method.This research provide the basis for the optimization of volume fracturing scheme and on-site construction.

     

  • loading
  • [1]
    刘建坤,蒋廷学,万有余,等. 致密砂岩薄层压裂工艺技术研究及应用[J]. 岩性油气藏,2018,30(1):165-172.

    LIU Jiankun, JIANG Tingxue, WAN Youyu, et al. Fracturing technology for thin layer in tight sandstone reservoir and its application[J].Lithologic Reservoirs, 2018,30(1):165-172.
    [2]
    刘雪峰,吴向阳,李刚,等. 延长气藏压裂改造支撑裂缝导流能力系统评价[J]. 断块油气田,2018,25(1):70-75.

    LIU Xuefeng, WU Xiangyang, LI Gang, et al. Systematic evaluation of supporting fracture capacity of extended gas reservoir fracturing reconstruction[J]. Fault Block Oil and Gas Field,2018, 25(1):70-75.
    [3]
    王雷,王琦. 页岩气储层水力压裂复杂裂缝导流能力实验研究[J]. 西安石油大学学报(自然科学版),2017, 32(3):73-77. WANG Lei,WANG Qi. Experimental study on the hydraulic conductivity of complex fractures in shale gas reservoirs[J]. Journal of Xi'an Shiyou University:Natural Science Edition,2017,32(3):73-77.
    [4]
    王中学, 秦升益,张士诚. 压裂液残渣对不同支撑剂导流能力的影响[J]. 钻采工艺,2017,40(1):56-60.

    WANG Zhongxue, QIN Shengyi, ZHANG Shicheng. Effect of fracturing fluid residue on the conductivity of different proppants[J].Drilling & Production Technology, 2017,40(1):56-60.
    [5]
    苏煜彬,林冠宇,韩悦. 致密砂岩储层水力加砂支撑裂缝导流能力[J]. 大庆石油地质与开发,2017,36(6):140-145.

    SU Yubin, LIN Guanyu, HAN Yue. The ability of hydraulic sand-supporting fracture conductivity in tight sandstone reservoirs[J]. Daqing Petroleum Geology and Development,2017,36(6):140-145.
    [6]
    熊俊杰. 支撑剂铺砂方式对其导流能力影响研究[J]. 石油化工应用,2017,36(9):32-34.

    XIONG Junjie. Study on the influence of proppant sanding method on its conductivity[J].Petrochemical Industry Application,2017,36(9):32-34.
    [7]
    李超,赵志红,郭建春,等. 延长致密油储层支撑剂嵌入导流能力伤害实验分析[J]. 油气地质与采收率, 2016,23(4):122-126.

    LI Chao, ZHAO Zhihong, GUO Jianchun, et al. Experimental analysis of the damage of embedded oil reservoir proppant embedding ability[J].Petroleum Geology and Recovery Efficiency,2016,23(4):122-126.
    [8]
    曹科学,蒋建方,郭亮,等. 石英砂陶粒组合支撑剂导流能力实验研究[J]. 石油钻采工艺,2016,38(5):684-688.

    CAO Kexue, JIANG Jianfang, GUO Liang, et al. Experimental study on the conductivity of quartz sand ceramsite composite proppant[J].Oil Drilling & Production Technology,2016,38(5):684-688.
    [9]
    毕文韬,卢拥军,蒙传幼,等. 页岩储层支撑裂缝导流能力实验研究[J]. 断块油气田,2016,23(1):133-136.

    BI Wentao, LU Yongjun, MENG Chuanyou, et al. Experimental study on the conductivity of supporting fractures in shale reservoirs[J].Fault-Block Oil & Gas Field,2016,23(1):133-136.
    [10]
    王雷,邵俊杰,韩晶玉,等. 通道压裂裂缝导流能力影响因素研究[J]. 西安石油大学学报(自然科学版), 2016,31(3):52-56. WANG Lei, SHAO Junjie, HAN Jingyu, et al. Study on the influencing factors of channel fracturing fracture conductivity[J].Journal of Xi'an Shiyou University:Natural Science Edition,2016,31(3):52-56.
    [11]
    曲占庆,周丽萍, 曲冠政,等. 高速通道压裂支撑裂缝导流能力实验评价[J]. 油气地质与采收率,2015,22(1):122-126.

    QU Zhanqing,ZHOU Liping,QU Guanzheng, et al. Experimental evaluation of fracture conductivity of highspeed channel fracturing support[J].Petroleum Geology and Recovery Efficiency,2015,22(1):122-126.
    [12]
    毕文韬,卢拥军,蒙传幼,等. 页岩储层导流能力影响因素新研究[J]. 科学技术与工程,2015,15(30):115-118.

    BI Wentao,LU Yongjun,MENG Chuanyou,et al. A new study on the influencing factors of shale reservoir conductivity[J].Science Technology and Engineering, 2015,15(30):115-118.
    [13]
    曲占庆,黄德胜,杨阳,等. 气藏压裂裂缝导流能力影响因素实验研究[J]. 断块油气田,2014,21(3):390-393.

    QU Zhanqing, HUANG Desheng, YANG Yang, et al. study on influencing factors of gas reservoir fracturing fracture conductivity[J].Fault Block Oil and Gas Field, 2014,21(3):390-393.
    [14]
    温庆志, 李杨, 胡蓝霄, 等. 页岩储层裂缝网络导流能力实验分析[J]. 东北石油大学学报,2013,37(6):55-62.

    WEN Qingzhi, LI Yang, HU Lanxi ao, et al. Experimental analysis of network conductivity of shale reservoir fracture network[J].Journal of Northeast Petroleum University,2013,37(6):55-62.
    [15]
    贾长贵. 页岩气网络压裂支撑剂导流特性评价[J]. 石油钻探技术,2014,42(5):42-46.

    JIA Changgui. Evaluation of the conductivity characteristics of fracturing proppants in shale gas network[J].Petroleum Drilling Techniques,2014,42(5):42-46.
    [16]
    吴百烈,韩巧荣,张晓春,等. 支撑裂缝导流能力新型实验研究[J]. 科学技术与工程,2013,13(10):2652-2656.

    WU Bailie, HAN Qiaorong, ZHANG Xiaochun, et al. A new experimental study on the ability of supporting fractures to conduct flow[J].Science Technology and Engineering,2013(10):2652-2656.
    [17]
    卢聪,郭建春,王文耀,等. 支撑剂嵌入及对裂缝导流能力损害的实验[J]. 天然气工业,2008,28(2):99-101.

    LU Cong,GUO Jianchun,WANG Wenyao,et al. Experiment of proppant embedding and damage to fracture conductivity[J]. Natural Gas Industry,2008,28(2):99-101.
    [18]
    蒋建方,张智勇,胥云,等. 液测和气测支撑裂缝导流能力室内实验研究[J]. 石油钻采工艺,2008,30(1):67-70.

    JIANG Jianfang,ZHANG Zhiyong,XU Yun,et al. Inhouse experimental study on fluid conductivity and gas measurement support fracture conductivity[J].Oil Drilling & Production Technology,2008,30(1):67-70.
    [19]
    金智荣,郭建春,赵金洲,等. 支撑裂缝导流能力影响因素实验研究与分析[J]. 钻采工艺,2007,30(5):36-38.

    JIN Zhirong,GUO Jianchun,ZHAO Jinzhou,et al. Experimental research and analysis of factors influencing the conductivity of supporting fractures[J]. Drilling & ProductionTechnology,2007,30(5):36-38.
    [20]
    金智荣,郭建春,赵金洲,等. 不同粒径支撑剂组合对裂缝导流能力影响规律实验研究[J]. 石油地质与工程,2007,21(6):88-90.

    JIN Zhirong,GUO Jianchun,ZHAO Jinzhou,et al. Experimental study on the influence of different particle size proppant combinations on fracture conductivity[J]. Petroleum Geology and Engineering,2007,21(6):88-90.
    [21]
    温庆志,张士诚,王雷,等. 支撑剂嵌入对裂缝长期导流能力的影响研究[J]. 天然气工业,2005,25(5):65-68.

    WEN Qingzhi,ZHANG Shicheng,WANG Lei,et al. Study on the influence of proppant embedding on the long-term conductivity of cracks[J].Natural Gas Industry, 2005,25(5):65-68.
    [22]
    张毅,马兴芹,靳保军. 压裂支撑剂长期导流能力试验[J]. 石油钻采工艺,2004,26(1):59-61.

    ZHANG Yi,MA Xingqin,JIN Baojun. Long-term conductivity test of fracturing proppant[J].Oil Drilling & Production Technology,2004,26(1):59-61.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (521) PDF downloads(303) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return