Volume 36 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
NIE Shuaishuai, ZHENG Lihui, MENG Shangzhi, WEI Panfeng, ZHANG He, SUN Hao. Control the Crack Morphology of Hydraulic Fracture by Fuzzy-ball Fluid in Coal Seam[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 639-645. doi: 10.3969/j.issn.1001-5620.2019.05.020
Citation: NIE Shuaishuai, ZHENG Lihui, MENG Shangzhi, WEI Panfeng, ZHANG He, SUN Hao. Control the Crack Morphology of Hydraulic Fracture by Fuzzy-ball Fluid in Coal Seam[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 639-645. doi: 10.3969/j.issn.1001-5620.2019.05.020

Control the Crack Morphology of Hydraulic Fracture by Fuzzy-ball Fluid in Coal Seam

doi: 10.3969/j.issn.1001-5620.2019.05.020
  • Received Date: 2019-05-20
  • Publish Date: 2019-10-30
  • The direction of hydraulic fractures in the coal seam is diverted along the direction of cutting and natural fractures, the crack morphology of hydraulic fracture is irregular and elongated. Using Fuzzy-ball temporary plugging natural cracks to form regular cracks. Laboratory tests show that the settlement rate of φ0.9 mm ceramsite in Fuzzy-ball fluid is 0.003 cm/s, meeting the requirements of carrying sand; The pressure capacity of the crack plugged with Fuzzy-ball is 18 MPa, able to prevent hydraulic fractures extending in the direction of cleat or natural fractures. Fuzzy-bal fluid damage coal rock permeability recovery value is 86%, satisfying gas production requirements. Field preparation apparent Fuzzy-ball fluid 520 m3. Separate Shanxi and Taiyuan coal seams by sand for stratified fracturing. During the pumping process of sand carrying liquid, the pump pressure is stable at 14.64-15.99 MPa, indicating that there is no blockage and diversion in the process of hydraulic fracture extension. The simulation results show that the fracture length and height of Taiyuan Formation are 155.7 m and 41.3 m respectively, and the fracture length and height of Shanxi coal seams are 163.9 m and 47.5 m respectively. Therefore, Fuzzy-ball fluid can be used to produce a long crack in coal seam, solving the problem of unsatisfactory hydraulic fracturing effect in coal seam.

     

  • loading
  • [1]
    DANESHY A A. Hydraulic fracture propagation in the presence of planes of weakness[R]. presented at the SPEEuropean Spring Meeting, Amsterdam,SPE 4852,1974.
    [2]
    刘世奇,桑树勋,李梦溪,等. 樊庄区块煤层气井产能差异的关键地质影响因素及其控制机理[J]. 煤炭学报,2013,38(2):277-283.

    LIU Shiqi,SANG Shuxun,LI Mengxi,et al. Key geologic factors and control mechanisms of water production and gas production divergences between CBM wells in Fan zhuang block[J]. Journal of China Coal Society,2013,38(2):277-283.
    [3]
    张义,鲜保安,孙粉锦,等. 煤层气低产井低产原因及增产改造技术[J]. 天然气工业,2010,30(6):55-59.

    ZHANG Yi,XIAN Baoan,SUN Fenjing,et al. The Reasons of low yield wells in coalbed methane wells and the technology of increasing production[J]. Natural Gas Industry,2010,30(6):55-59.
    [4]
    陈尚斌,朱炎铭,刘通义,等. 清洁压裂液对煤层气吸附性能的影响[J]. 煤炭学报,2009,34(1):89-93.

    CHEN Shangbin,ZHU Yanming,LIU Tongyi,et al. Impact of the clear fracturing fluid on the adsorption properties of CBM[J]. Journal of China Coal Society, 2009,34(1):89-93.
    [5]
    郑力会,魏攀峰,楼宣庆,等. 氯化钾溶液浓度影响页岩气储层解吸能力室内实验[J]. 钻井液与完井液, 2016,33(3):117-122.

    ZHENG Lihui,WEI Panfeng,LOU Xuanqing,et al. Laboratory experiments on the effect of KCl concentration on desorption capacity of reservoir rocks[J]. Drilling Fluid & Completion Fluid,2016,33(3):117-122.
    [6]
    WARPINSKI N R,LORENZ J C,BRANAGAN P T, et al. Examination of a cored hydraulic fracture in a deep gas well[J]. SPE Production & Facilities,1993,8(8):150-158.
    [7]
    BEUGELSDIJK L J L,PATER C J D,SATO K. Experimental hydraulic fracture propagation in a multifractured medium[R]. SPE Asia Pacific Conference on Integrated Modelling for Asset Management,SPE 59419,2000.
    [8]
    程远方,徐太双,吴百烈,等. 煤岩水力压裂裂缝形态实验研究[J]. 天然气地球科学,2013,24(1):134-137.

    CHENG Yuanfang,XU Taishuang,WU Bailie,et al. Experimental study on the hydraulic fractures' morphology of coal bed[J]. Natural Gas Geoscience,2013,24(1):134-137.
    [9]
    王春鹏,张士诚,王雷,等. 煤层气井水力压裂裂缝导流能力实验评价田[J]. 中国煤层气,2006,3(1):17-20.

    WANG Chunpeng,ZHANG Shicheng,WANG Lei,et al. Experimental evaluation on conductivity of hydraulic fracturing in CBM wells[J].China Coalbed Methane, 2006,3(1):17-20.
    [10]
    郝丽,段宝玉. 煤层中水对煤层气产量的影响[J]. 中国煤层气,2012(4):32-34. HAO Li,DUAN Baoyu. The impact of water in coal seam on CBM yield[J].China Coalbed Methane,2012

    (4):32-34.
    [11]
    单学军,张士诚,李安启,等. 煤层气井压裂裂缝扩展规律分析[J]. 天然气工业,2005,25(1):130-132.

    SHAN Xuejun,ZHANG Shicheng,LI Anqi,et al. Analyzing the fractureextended law of liydraulic fracturing in coalbed gas wells[J]. Natural Gas lndustry, 2005,25(1):130-132.
    [12]
    任宜伟,楼宣庆,段宝江,等. 工程参数对L区煤层气直井产量影响的定量研究[J]. 石油钻采工艺,2016, 38(4):487-493.

    REN Yiwei,LOU Xuanqing,DUAN Baojiang,et al. Quantitative analysis onthe effect of engineering paramters on production rateof CBM vertical well in Block L[J]. Oil Drilling& Production Technology,2016,38(4):487-493.
    [13]
    JEFFREY R G,Hinkel J J, NIMERICK K H, et al. Hydraulic fracturing to enhance production of methane from coal seams[C]. Proceedings International Coalbed Methane Symposium,1989:385-394.
    [14]
    杨宇,林璠,曹煌,等. 煤层气直井间接压裂施工的先导地质分析[J]. 煤田地质与勘探,2016,44(3):46-50.

    YANG Yu,LIN Fan,CAO Huang,et al. Pilot geological analysis of indirectfracturing in vertical CBM well[J].Coal Geology & Exploration,2016,44(3):46-50.
    [15]
    边利恒,熊先钺,王炜彬. 低渗透软煤储层压裂改造研究[J]. 煤炭技术,2017,36(2):185-186.

    BIAN Liheng,XIONG Xianyue,WANG Weibin. Research on stimulation of low permeability soft coal formation[J].Coal Technology,2017,36(2):185-186.
    [16]
    CRAMER D D. The unique aspects of fracturing Western U.S. coalbeds[J]. Journal of Petroleum Technology, 1992,42(10):351-361.
    [17]
    贾建称,张泓,贾茜,等.煤储层割理系统研究:现状与展望[J]. 天然气地球科学,2015,26(9):1621-1628.

    JIA Jiancheng,ZHANG Hong,JIA Qian,et al. Status and prospect:studynnthe cleat system in coal reservoir[J].Natural Gas Geoscienceal,2015,26(9):1621-1628.
    [18]
    郑力会,张明伟. 封堵技术基础理论回顾与展望[J]. 石油钻采工艺,2012,34(5):1-9.

    ZHENG Lihui,ZHANG Mingwei. Review of basic theory for lost circulation control[J].Oil Drilling & Production Technology,2012,34(5):1-9.
    [19]
    郑力会,孔令琛,曹园,等.绒囊工作液防漏堵漏机理[J]. 科学通报,2010,55(15):1520-1528.

    ZHENG Lihui,KONG Lingchen,CAO Yuan,et al. The Mechanism for fuzzy-ball working fluids for controlling & killing lost circulation[J]. Chinese Sci Bull, 2010,55(15):1520-1528.
    [20]
    郑力会,陈必武,张峥,等. 煤层气绒囊钻井流体的防塌机理[J]. 天然气工业,2016,36(2):72-77.

    ZHENG Lihui,CHEN Biwu,ZHANG Zheng,et al. Anti-collapse mechanism of the CBM fuzzy-ball drilling fluid[J]. Natural Gas Industry,2016,36(2):72-77.
    [21]
    孟尚志, 张志珩,赵军. 绒囊钻井液在煤层气水平井稳定井壁技术的应用[J]. 钻井液与完井液,2014,31(3):35-38.

    MENG Shangzhi,ZHANG Zhihang,ZHAO Jun. Application of chorionic drilling fluid in stabilizing borehole wall in horizontal coal bedmethane drilling[J]. Drilling Fluid & Completion Fluid,2014,31(3):35-38.
    [22]
    温哲豪,薛亚斐,白建文,等.GX-3井绒囊流体暂堵重复酸化技术[J]. 石油钻采工艺,2015,37(5):85-88.

    WEN Zhehao,XUE Yafei,BAI Jianwen,et al. Technology of re-acidizing Well GX-3 by temporary plugging with fuzzy-ball fluid[J]. Oil Drilling & Production Technology,2015,37(5):85-88.
    [23]
    郑力会,翁定为.绒囊暂堵液原缝无损重复压裂技术[J]. 钻井液与完井液,2015,32(3):76-78.

    ZHENG Lihui,WONG Dingwei. Study on repeating fracturing while causing no damage to original fractures[J]. Drilling Fluid & Completion Fluid,2015, 32(3):76-78.
    [24]
    郑力会,崔金榜,聂帅帅,等. 郑X井非产水煤层绒囊暂堵流体重复压裂转向试验[J]. 钻井液与完井液, 2016,33(5):103-108.

    ZHENG Lihui,CUI Jinbang,NIE Shuaishuai,et al. Field test on alter-orientation re-fracturing in non water coal bed of Zhengdong 6X well by Fuzzy-ball fluid[J]. Drilling Fluid & Completion Fluid,2016,33(5):103-108.
    [25]
    聂帅帅,郑力会,陈必武,等. 郑3X煤层气井绒囊流体重复压裂控水增产试验[J]. 石油钻采工艺,2017, 39(3):362-369.

    NIE Shuaishuai,ZHENG Lihui,CHEN Biwu,et al. Field test on water plugging and refracturing to increase production in coalbed of Zheng 3X well by fuzzy-ball fluid[J]. Oil Drilling & Production Technology,2017, 39(3):362-369.
    [26]
    朱立国,黄波,陈维余,等. 适于高矿化度地层水地层的稳油控水绒囊流体[J]. 石油钻采工艺,2016,38(2):216-220.

    ZHU Liguo,HUANG Bo,CHEN Weiyu,et al. Fuzzyball fluid for stabilizing oil production and water control in formations with high-salinity water[J]. Oil Drilling & Production Technology,2016,38(2):216-220.
    [27]
    郭本广,郑力会,孟尚志,等. 绒囊工作液在煤层气勘探开发中的应用前景[J]. 资源与产业,2011,13(4):117-121.

    GUO Benguang,ZHENG Lihui,MENG Shangzhi,et al. Application prospect of Fuzzy-ball working fluid in coalbed methane exploration[J].Resources & Industries, 2011,13(4):117-121.
    [28]
    李达, 王乐, 衣德强, 等. 苏里格致密砂岩压裂中转向剂用量与转向角的关系[J]. 钻井液与完井液, 2018, 35(4):108-113.

    LI Da;WANG Le;YI Deqiang, et al.Functional Relationship between Amount of Diverting Agent and Diverting Angle in Fracturing Tight Sandstones in Sulige Gas Field[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):108-113.
    [29]
    郑力会,魏攀峰,张峥,等. 联探并采:非常规油气资源勘探开发持续发展自我救赎之路[J]. 天然气工业, 2017(5):126-140. ZHENG Lihui,WEI Panfeng,ZHANG Zheng,et al. Joint exploration and development:A self-salvation road to sustainable development of unconventional oil and gas resources[J]. Natural Gas Industry,2017

    (5):126-140.
    [30]
    肖兵,张高群,曾铮,等. 高温高密度压裂液在大古2井的应用[J]. 钻井液与完井液,2012(6):68-70. XIAO Bing,ZHANG Gaoqun,ZENG Zheng,et al. Application on high temperature and high density fracturing fluid in well Dagu 2

    [J]. Drilling Fluid & Completion Fluid,2012,(6):68-70.
    [31]
    刘海龙,吴淑红. 煤层气井压裂效果评价及压裂施工工程因素分析[J]. 非常规油气,2014,1(3):64-71.

    LIU Hailong,WU Shuhong. Evaluation of coal bed methane wells fracturing effect and analysis of fracturing project influencing factors[J].Unconventonal Oil & Gas, 2014,1(3):64-71.
    [32]
    SY/T 5289-2016油、气、水井压裂设计与施工及效果评估方法[S]. SY/T 5289-2016 Fracturing design, treatment and postfracturing effect evaluation methods of oil, gas and injection wells[S].
    [33]
    李勇明,赵金洲,郭建春. 天然裂缝性储层压裂液滤失的数值模拟研究[J]. 钻井液与完井液,2004,21(1):20-22.

    LI Yongming,ZHAO Jinzhou,GUO Jianchun. Numerical simulation of fracturing-luid filtrate loss in natural fracture-type reservoir[J]. Drilling Fluid & Completion Fluid,2004,21(1):20-22.
    [34]
    张昕, 余航, 龙珂, 等. 裂缝高度控制技术在FracproPT施工优化中的应用[J]. 油气地球物理, 2011,9(4):51-54.

    ZHANG Xin,YU Hang,LONG Ke,et al. Application of fracture height control technologyin Fracpro PT construction optimization[J]. Petroleum Geophysics, 2011,9(4):51-54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (675) PDF downloads(166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return