WANG Shuyi, XU Mingbiao, YOU Fuchang, DENG Cong, WANG Hangzhi. A Laboratory Test Method for Predicting Mud Ball Generation in Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 600-604. doi: 10.3969/j.issn.1001-5620.2019.05.013
Citation: WANG Shuyi, XU Mingbiao, YOU Fuchang, DENG Cong, WANG Hangzhi. A Laboratory Test Method for Predicting Mud Ball Generation in Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 600-604. doi: 10.3969/j.issn.1001-5620.2019.05.013

A Laboratory Test Method for Predicting Mud Ball Generation in Drilling Fluids

doi: 10.3969/j.issn.1001-5620.2019.05.013
  • Received Date: 2019-05-13
  • Publish Date: 2019-10-30
  • When drilling soft mudstones, mud ball will be generated in the drilling fluid flowing upwards in the annulus. To predict the generation of mud balls in a drilling fluid, an evaluation procedure with test parameters was established using drilling fluid measuring apparatus. In the procedure, drilled cuttings containing water and steel balls are mixed together and tested on a hot rolling tester (to simulate the flow of cuttings downhole). Using this procedure, some drilling fluids were tested. Test results showed that this procedure is feasible in predicting the generation of mud balls in several kinds of drilling fluids. The test results conformed to what were observed in field operations. In laboratory test, it was found that conditions for a water base drilling fluid to generate mud balls during drilling were as follows:hot rolling at 90℃ for 20 min. the conditions for an oil base drilling fluid to generate mud balls were:ht rolling at 120℃ for 30 min. Experimental results obtained from this procedure can be used as a base on which drilling fluid is optimized for high efficiency and safe drilling operation.

     

  • [1]
    DYE W M, DAUGEREAU K,HANSEN N A, et al. New water-based mud balances high-performance drilling and environmental compliance[M]. Society of Petroleum Engineers, 2006.
    [2]
    张岩,向兴金,鄢捷年,等. 快速钻井中泥球形成的影响因素与控制措施[J]. 中国海上油气, 2011, 23(5):335-339.

    ZHANG Yan,XIANG Xingjin,YAN Jienian, et al. Influencing factors and control measures of mud ball formation in rapid drilling[J].China Offshore Oil and Gas, 2011, 23(5):335-339.
    [3]
    MENSA-WILMOT G, FEAR M. Innovative technology improves penetration rates of PDC bits in shales drilled at great depth with weighted water based mud systems[C]//IADC/SPE Drilling Conference. Society of Petroleum Engineers, 2002.
    [4]
    DE STEFANO G, YOUNG S. The prevention and cure of bit balling in water based drilling fluids[C]//Offshore Mediterranean Conference and Exhibition. Offshore Mediterranean Conference, 2009.
    [5]
    蒲晓林, 梁大川, 王平全,等. 抑制钻屑形成泥球的钻井液研究[J]. 西南石油大学学报(自然科学版), 2002, 24(2):46-49. PU Xiaolin,LIANG Dachuan,WANG Pingquan, et al. Study on drilling fluid for inhibiting cuttings from forming mud balls[J]. Southwest Petroleum University(Science & Technology Edition),2002, 24(2):46-49.
    [6]
    赵向阳,李宝军,崔贵涛. 厄瓜多尔TARAPOA区块上部欠压实地层钻井液技术[J]. 石油钻采工艺,2018, 40(4):435-438.

    ZHAO Xiangyang, LI Baojun, CUI Guitao. Drilling fluid technology for top undercompacted formation in Tarapoa Block of Ecuador[J]. Oil Drilling & Production Technology,2018,40(4):435-438.
    [7]
    李林波, 王震宇, 吕晓平,等. PDC钻头泥包原因分析与处理对策研究[J]. 西部探矿工程, 2017, 29(9):21-23.

    LI Linbo,WANG Zhenyu,LYU Xiaoping,et al. Cause analysis znd treatment countermeasure of PDC bit sludge[J]. West-china Exploration Engineering,2017, 29(9):21-23.
    [8]
    刘海水, 王超, 魏子路,等. 钻井过程中泥球形成的影响因素探讨[J]. 化学与生物工程, 2011, 28(8):70-73.

    LIU Haishui,WANG Chao,WEI Zilu,et al.Discussion on the influencing factors of mud ball formation during drilling[J].Chemistry & Bioengineering, 2011, 28(8):70-73.
    [9]
    郝彬彬, 项涛, 胡进军,等. 钻井液防泥包性能室内动态评价实验方法[J]. 中国海上油气, 2017, 29(3):101-106.

    HAO Binbin,XIANG Tao,HU Jinjun, et al. Experimental method for indoor dynamic evaluation of drilling fluid anti-clay performance[J]. China Offshore Oil and Gas, 2017, 29(3):101-106.
    [10]
    杨玉豪, 张万栋, 王成龙, 等. 东方某气田浅部软泥岩地层抑制泥球生成技术[J]. 钻井液与完井液, 2019, 36(3):315-320.

    YANG Yuhao,ZHANG Wandong,WANG Chenglong, et al. Inhibition of mud balls formed in drilling the shallow soft mudstone formation in an dongfand gas field[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):315-320.
  • Relative Articles

    [1]WANG Zhonghua. Research and Application Status, Existing Problems and Development Suggestions of Drilling Fluid in China[J]. DRILLING FLUID & COMPLETION FLUID.
    [2]SONG Hanxuan, YE Yan, ZHOU Zhishi, ZHANG Hanyu, ZHANG Qingwen, ZHOU Fujian, GUO Jixiang. Development of Paraffin Microemulsion and Its Application in Water-Based Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(5): 550-557. doi: 10.12358/j.issn.1001-5620.2022.05.004
    [3]YANG Lanping, LI Zhiqiang, NIE Qiangyong, LIANG Yi, JIANG Guancheng. Study on Effects of Temperature and Pressure on Density of Oil Based Drilling Fluids and the Mathematical Model Thereof[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 151-157. doi: 10.12358/j.issn.1001-5620.2022.02.004
    [4]DENG Rong, LIU Jianping, LUO Minmin, ZHANG Jiayu, HUANG Anlong. Effects of Drilling Fluid Soaking on Surface Morphology of Rocks at Different Temperatures[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(6): 691-697. doi: 10.12358/j.issn.1001-5620.2021.06.005
    [5]LI Cheng, BAI Yang, YU Yang, XU Xiaochen, FAN Sheng, LUO Pingya. Study and Application of Drilling Fluid Technology for Stabilizing Fractured Formations in Shunbei Oilfield[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 15-22. doi: 10.3969/j.issn.1001-5620.2020.01.003
    [6]LU Yunhu, XIAO Xianheng, ZHAO Lin, JIN Yan, CHEN Mian. The Effect of Temperature on Stability of Borehole Wall in Ultra-Deep Fractured Formation[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 160-167. doi: 10.3969/j.issn.1001-5620.2020.02.005
    [7]LI Xu, REN Shengli, LIU Wencheng, ZHAO Danhui, LIAO Maolin, LIN Liming. Study on Temperature and Pressure Correction Model for Predicting Liquid Phase Density of Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 168-173. doi: 10.3969/j.issn.1001-5620.2020.02.006
    [8]PAN Yidang, YU Peizhi. Effect of Density on the Performance of Oil Base Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 273-279. doi: 10.3969/j.issn.1001-5620.2019.03.002
    [9]YANG Yuhao, ZHANG Wandong, WANG Chenglong, HAN Cheng, WU Jiang, ZHANG Chao. Inhibition of Mud Balls Formed in Drilling the Shallow Soft Mudstone Formation in an Dongfand Gas Field[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 315-320. doi: 10.3969/j.issn.1001-5620.2019.03.009
    [10]WANG Jinfen, GENG Dongshi, YI Xiaoling, MA Junhan, JIANG Luming, HE Lipeng. Study on the Evaluating Standard of Drilling Bentonite[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(6): 37-41. doi: 10.3969/j.issn.1001-5620.2018.06.007
    [11]LIANG Wenli. Progress on Drilling Fluid Technology for Hot Dry Rock Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 7-13. doi: 10.3969/j.issn.1001-5620.2018.04.002
    [12]LIU Zheng, LI Juncai, LI Xuan, LI Maosen, HU Jing, FAN Jin. High Performance Water Base Drilling Fluid CQH-M2 and Its Application on Well Wei204H11-4[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(3): 32-36. doi: 10.3969/j.issn.1001-5620.2018.03.005
    [13]AI Zhengqing, ZHANG Feng, DING Hui, SU Donghua, LI Wei, ZHANG Xingguo. Effects of Temperature on Mechanical Property of Set Cement and Analysis Thereof[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 77-81. doi: 10.3969/j.issn.1001-5620.2018.04.014
    [14]LI Jianjun, WANG Zhongyi. High Temperature Solid-free Drilling Fluid Technology[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(3): 11-15. doi: 10.3969/j.issn.1001-5620.2017.03.002
    [15]HU Wenjun, CHENG Yusheng, LI Huaike, XIANG Xiong, YANG Honglie, XIONG Yong. Drilling Fluid Technology for Deepwater HTHP Well[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(1): 70-76. doi: 10.3969/j.issn.1001-5620.2017.01.013
    [16]XIE Jun, SI Xiqiang, LEI Zumeng, LI Hongxing, JIA Baoxu. Research and Application of OBM-like Water Base Drilling Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(4): 26-31. doi: 10.3969/j.issn.1001-5620.2017.04.005
    [17]XU Bihua, FENG Qinghao, XIE Yingquan, YANG Yuhao. A Method of Calculating Rheology of Cement Slurry Affected by Circulation Temperature[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(6): 79-82. doi: 10.3969/j.issn.1001-5620.2017.06.015
    [18]LI Huaike, LIU Weili. Study on Effects of Temperature on Coefficient of Heat Conductivity of Saltwater[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(5): 54-57. doi: 10.3969/j.issn.1001-5620.2017.05.010
    [19]QIN Yong, HUANG Ping, WAN Wei. Drilling Fluid to Accelerate Drilling in Top Formations in Mid-Sichuan[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(3): 96-98. doi: 10.3969/j.issn.1001-5620.2015.03.027
    [20]ZHANG Xiang, ZHAO Fengchen, CAO Xiaohui, WEI Yonghong, XU Yang. Recycling of Drilling Fluids in Sulige Gasfield[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(3): 99-102. doi: 10.3969/j.issn.1001-5620.2015.03.028
  • Cited by

    Periodical cited type(2)

    1. 易鹏昌,张立权,李强,申永强,敬毅,但春阳. 涠洲11-1油田调整井水基钻井液优选与应用. 化工管理. 2024(02): 152-155 .
    2. 李慧敏,王明亮,罗兵,张静,吴可. 抑制钻屑形成泥球的油基钻井液研究. 当代化工. 2022(06): 1320-1323 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.3 %FULLTEXT: 27.3 %META: 70.6 %META: 70.6 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %其他: 4.5 %其他: 4.5 %Algeria: 0.5 %Algeria: 0.5 %Canada: 0.2 %Canada: 0.2 %Chile: 0.2 %Chile: 0.2 %China: 0.7 %China: 0.7 %Egypt: 0.2 %Egypt: 0.2 %India: 0.2 %India: 0.2 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Netherlands: 0.2 %Netherlands: 0.2 %Ta'if: 0.2 %Ta'if: 0.2 %United States: 0.2 %United States: 0.2 %[]: 3.0 %[]: 3.0 %上海: 26.1 %上海: 26.1 %伊瓦格: 0.2 %伊瓦格: 0.2 %克拉玛依: 0.2 %克拉玛依: 0.2 %加拿大布兰普顿: 0.1 %加拿大布兰普顿: 0.1 %北京: 2.8 %北京: 2.8 %台州: 0.1 %台州: 0.1 %咸阳: 0.1 %咸阳: 0.1 %天津: 0.2 %天津: 0.2 %奥斯陆: 0.2 %奥斯陆: 0.2 %宣城: 0.2 %宣城: 0.2 %张家口: 1.6 %张家口: 1.6 %徐州: 0.1 %徐州: 0.1 %得克萨斯州: 0.2 %得克萨斯州: 0.2 %成都: 0.1 %成都: 0.1 %新怡诗夏省: 0.5 %新怡诗夏省: 0.5 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.2 %晋城: 0.2 %曼谷: 0.4 %曼谷: 0.4 %榆林: 0.2 %榆林: 0.2 %沃尔纳特: 0.1 %沃尔纳特: 0.1 %沈阳: 0.3 %沈阳: 0.3 %泸州: 0.1 %泸州: 0.1 %济南: 0.1 %济南: 0.1 %湖州: 0.1 %湖州: 0.1 %濮阳: 0.2 %濮阳: 0.2 %盘锦: 0.1 %盘锦: 0.1 %石家庄: 0.1 %石家庄: 0.1 %纽约: 0.2 %纽约: 0.2 %维沙卡帕特南: 0.2 %维沙卡帕特南: 0.2 %芒廷维尤: 29.1 %芒廷维尤: 29.1 %芝加哥: 0.2 %芝加哥: 0.2 %荆州: 0.1 %荆州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 8.2 %西宁: 8.2 %西安: 0.1 %西安: 0.1 %西爪哇: 0.2 %西爪哇: 0.2 %西雅图: 0.1 %西雅图: 0.1 %许昌: 0.1 %许昌: 0.1 %贵阳: 0.7 %贵阳: 0.7 %运城: 0.7 %运城: 0.7 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %重庆: 0.1 %重庆: 0.1 %长治: 0.1 %长治: 0.1 %阿姆斯特丹: 0.2 %阿姆斯特丹: 0.2 %驻马店: 4.3 %驻马店: 4.3 %黑森州: 0.2 %黑森州: 0.2 %其他其他AlgeriaCanadaChileChinaEgyptIndiaKorea Republic ofNetherlandsTa'ifUnited States[]上海伊瓦格克拉玛依加拿大布兰普顿北京台州咸阳天津奥斯陆宣城张家口徐州得克萨斯州成都新怡诗夏省无锡昆明晋城曼谷榆林沃尔纳特沈阳泸州济南湖州濮阳盘锦石家庄纽约维沙卡帕特南芒廷维尤芝加哥荆州衢州西宁西安西爪哇西雅图许昌贵阳运城连云港邯郸重庆长治阿姆斯特丹驻马店黑森州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (922) PDF downloads(221) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return