Volume 36 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
SONG Jianjian, XU Mingbiao, WANG Xiaoliang, HUANG Feng, QIN Guochuan. The Effects of a New Phase Change Material on the Properties of Low Heat Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 218-223. doi: 10.3969/j.issn.1001-5620.2019.02.015
Citation: SONG Jianjian, XU Mingbiao, WANG Xiaoliang, HUANG Feng, QIN Guochuan. The Effects of a New Phase Change Material on the Properties of Low Heat Cement Slurries[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 218-223. doi: 10.3969/j.issn.1001-5620.2019.02.015

The Effects of a New Phase Change Material on the Properties of Low Heat Cement Slurries

doi: 10.3969/j.issn.1001-5620.2019.02.015
  • Received Date: 2018-12-11
  • Publish Date: 2019-04-30
  • When cementing wells drilled in low temperature deep water zones, cement slurry should give off less heat during hydration process to minimize the increase of temperature of the formations with natural gas hydrate. A new phase change material has been developed for use in low heat cement slurries used to cement wells penetrating formations with gas hydrate. The heat storage performance of the phase change material and its effects on the properties of cement slurry were studied. Laboratory experimental results showed that the peak temperature at which phase change takes place was 15.5℃ for the new phase change material. This temperature sits between downhole low temperatures and ambient temperature, and the latent heat of phase change was high. At temperatures below 77.8℃, the phase change material had good thermal stability. No change to the chemical structure of the phase change material ever happened after the phase change material had undergone many times of temperature fluctuation between 0℃ and 60℃. The rheology of the cement slurry increased with an increase in the concentration of the phase change material. Increasing the concentration of the phase change material to 8% did not affect the ability of the cement slurry to satisfy the needs of well cementing. Furthermore, the new phase change material helped improve the stability of cement slurry and only slightly affected the compressive strength of the low heat cement slurries. A low heat cement slurry treated with 8% of the new phase change material had set cement with compressive strength of 8.9 MPa, and the decrease of the compressive strength was less than 5% at most. When added 2%, 4%, 6% and 8% new phase change material into a cement slurry respectively, the thickening time of the cement slurry was 15 min less than that of the cement slurry without the new phase change material (the blank cement slurry). The 72-hour heat of hydration of the four cement slurries were reduced by 5.2%, 29.1%, 35.6% and 47.6% than the blank cement slurry, respectively. This study has provided a technical support and reference to the design of low heat cement slurry for use in cementing wells penetrating formations with natural gas hydrate.

     

  • loading
  • [1]
    黄守国. 适合于深水钻井的低热水泥浆研究[D]. 荆州:长江大学, 2012. HUANG Shouguo.Study of low thermal cementing slurry suitable for deep water drilling[D].Jingzhou:Yangtze University,2012.
    [2]
    SCHICKS J M, SPANGENBERG E, STEINHAUER B,et al. Natural gas hydrates:development and test of innovative methods for gas production from hydratebearing sediments[C]. SPE 137667,2010.
    [3]
    REDDY B R. Novel low heat-of-hydration cement compositions for cementing gas hydrate zones[C]. SPE 114927,2008,.
    [4]
    于欣, 胡晓峰, 黄占华. 有机/复合相变储能材料研究进展[J]. 功能材料, 2012, 43(S0):16-21.

    YU Xin,HU Xiaofeng,HUANG Zhanhua.Research progress in organic/composite phase change materials for energy storage[J].Journal of Functional Materials, 2012, 43(S0):16-21.
    [5]
    齐志刚. 低温低水化热固井水泥浆体系研究[D]. 青岛:中国石油大学(华东), 2009. QI Zhigang.Research on a low temperature and low hydration heat cement slurry system[D].Qingdao:China University of Petroleum,2009.
    [6]
    许明标, 王晓亮, 周建良,等. 天然气水合物层固井低热水泥浆研究[J]. 石油天然气学报, 2014(11):134-137. XU Mingbiao,WANG Xiaoliang,ZHOU Jianliang, et al.The research of low-heat slurry for cementing in the natural gas hydrate formation[J]. Journal of Oil and Gas Technology, 2014

    (11):134-137.
    [7]
    霍锦华,彭志刚,冯茜,等. 深水天然气水合物层固井用无机/有机复合型低水化热及水化温升水泥浆体系[C]//2018年固井技术研讨会论文集,北京:石油工业出版社,2018:106-115. HUO Jinhua,PENG Zhigang,FENG Qian,et al. Inorganic/organic composite low hydration heat and hydration temperature rise cement slurry system for cementing deewater gas hydrate layer[C]//Papers Collection of 2018 Cementing Technology Seminar. Beijing:Petroleum Industry Press,2018

    :106-115.
    [8]
    邢希金, 许明标. 低热水泥吸热储能材料研究[J]. 重庆科技学院学报(自然科学版), 2016, 18(5):100-102. XING Xijin, XU Mingbiao.Study on endothermic energystorage material of low thermal cement[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2016, 18(5):100-102.
    [9]
    张金华,方念乔,魏伟,等. 天然气水合物成藏条件与富集控制因素[J]. 中国石油勘探, 2018, 23(3):35-46.

    ZHANG Jinhua, FANG Nianqiao, WEI Wei, et al. Accumulation conditions and enrichment controlling factors of natural gas hydrate reservoirs[J]. China Petroleum Exploration, 2018, 23(3):35-46.
    [10]
    李莉. 相变材料及其储能混凝土的制备与性能研究[D]. 重庆:重庆大学, 2010. LI Li.Research on preparation and properties of phase change materials and energy storage concrete[D]. Chongqing:Chongqing University,2010.
    [11]
    畅玉皎. 公路用微胶囊型相变调温剂序列与中试研究[D]. 西安:长安大学, 2013. CHANG Yujiao.Research on sequences and pilot test of MEPCTA in highway construction[D]. Xi'an:Chang'an University,2013.
    [12]
    雷鹏飞. 页岩气水平井固井技术研究[D]. 西安:西安石油大学, 2014. LEI Pengfei.Research on cementing technology of shale gas horizonal well[D]. Xi'an:Xi'an Shiyou University, 2014.
    [13]
    张明昌, 牟忠信. 水泥浆失水量对油气层损害影响的试验研究[J]. 钻井液与完井液, 2005, 22(1):74-75.

    ZHANG Mingchang,MOU Zhongxin.Laboratory study on formation damage caused by cement slurry filtrate[J]. Drilling Fluid & Completion Fluid, 2005, 22(1):74-75.
    [14]
    PLANK J, LUMMER N R, Dugonji ć-Bilić F. Competitive adsorption between an AMPS-based fluid loss polymer and Welan gum biopolymer in oil well cement[J]. Journal of Applied Polymer Science,2010, 116(5):2913-2919.
    [15]
    冯望生, 田群山, 杜江,等. 玉门油田水平井固井技术[J]. 钻井液与完井液, 2016, 33(5):98-102.

    FENG Wangsheng,TIAN Qunshan,DU Jiang,et al. Horizontal well cementing technology used in Yumen oilfield[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):98-102.
    [16]
    SAASEN A, RAFOSS E, BEHZADI A. Experimental investigation of rheology and thickening time of class G oil well cement slurries containing glycerin[J]. Cement & Concrete Research, 1991, 21(5):911-916.
    [17]
    LIU H, BU Y, SANJAYAN J, et al. Effects of chitosan treatment on strength and thickening properties of oil well cement[J]. Construction & Building Materials, 2015, 75:404-414.
    [18]
    王瑞和,齐志刚,步玉环. 深水水合物层固井存在问题和解决方法[J]. 钻井液与完井液,2009,26(1):78-80.

    WANG Ruihe,QI Zhigang,BU Yuhuan.Problems and solutions:Cementing in hydrates bearing formations in deepwater well[J]. Drilling Fluid & Completion Fluid, 2009,26(1):78-80.
    [19]
    肖伟. 乐东15-1气田低密度水泥浆技术研究[D]. 青岛:中国石油大学(华东), 2011. XIAO Wei.Study of low density cementing slurry system in Ledong 15-1

    gas field[D].Qingdao:China University of Petroleum,2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (893) PDF downloads(221) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return