Volume 36 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
WANG Hong, YANG Can, ZHOU Xuehan, ZHANG Tao, YE Shunyou, JIE Jiahui. Drilling Fluid Technology for Drilling Deep Broken Formations in the Exploratory Well Huashen-1x[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 208-213. doi: 10.3969/j.issn.1001-5620.2019.02.013
Citation: WANG Hong, YANG Can, ZHOU Xuehan, ZHANG Tao, YE Shunyou, JIE Jiahui. Drilling Fluid Technology for Drilling Deep Broken Formations in the Exploratory Well Huashen-1x[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 208-213. doi: 10.3969/j.issn.1001-5620.2019.02.013

Drilling Fluid Technology for Drilling Deep Broken Formations in the Exploratory Well Huashen-1x

doi: 10.3969/j.issn.1001-5620.2019.02.013
  • Received Date: 2018-12-26
  • Publish Date: 2019-04-30
  • Well Huashen-1x, designed to drill to 5713.16 m, is the deepest exploratory extended-reach well deployed by CNPC in Fushan oilfield, Hainan. This well was drilled to ascertain the reservoir engineering data of the member Liu-3 located on the top of a fault nose structure. This well is located in the Fushan depression in the Beibuwan Basin, and the formation at the deep part of the well is the so-called Liushagang formation of the Paleogene System, which is complex. Faulting, broken belt of 1300 m in length, hard and brittle mudstone, developed micro fractures and beddings, strong water sensitivity of the formation rocks which are very instable and easy to slough, and high well temperature of up to 180℃, are all challenges to drilling fluid operations. The maximum displacement of the well designed was 3208 m. Extended-reach well places higher requirements on the rheology, inhibitive capacity and lubricity of the drilling fluid. During drilling, lack of understanding of the lithology of the formations resulted in severe sloughing in the highly deviated fourth interval and three times of sidetracking in this interval. In the third sidetracking, a drilling fluid formulated with organic salts and inorganic salts was used. This compounded salt drilling fluid, with its strong inhibitive capacity, good plugging capacity and high temperature resistance, resolved the borehole instability problems encountered in the broken belt between the Liu-2 member and Liu-3 member of the Liushagang formation, ensuring safe drilling and other operations in the fourth interval.

     

  • loading
  • [1]
    李洪俊, 代礼杨, 苏秀纯,等. 福山油田流沙港组井壁稳定技术[J]. 钻井液与完井液,2012,29(6):42-44.

    LI Hongjun,DAI Liyang,SU Xiuchun,et al.Research on wellbore stability technology in group of Liushagang of Fushan oilfield[J].Drilling Fluid & Completion Fluid, 2012,29(6):42-44.
    [2]
    魏文忠,王广书,吕国俭. 新1井严重破碎带地层钻井技术难点及对策[J]. 石油钻探技术,2006,34(6):27-29.

    WEI Wenzhong,WANG Guanshu,LYU Guojian. Technical troubles and countermeasures while penetrating severe fracture zones in Xin 1 well[J]. Petroleum Drilling Techniques,2006,34(6):27-29.
    [3]
    黄娅,孙盼科,万金彬,等. 福山油田流沙港组微观孔喉结构评价及其主控因素研究[J]. 长江大学学报(自科版),2016,13(26):8-13. HUANG Ya,SUN Panke,WAN Jinbin,et al. Microscope pore structure evaluation and main controlling factors of Liushagang reservoirs in Fushan oilfield[J]. Journal of Yangtze University(Natural Science Edition), 2016,13(26):8-13.
    [4]
    杨振堂. 海南福山油田钻井复杂情况分析与对策[J]. 科技资讯,2010(28):89-91. YANG Zhengtang.Analysis and countermeasure of drilling complexity in Hainan Fushan oilfield[J]. Science & Technology Information,2010

    (28):89-91.
    [5]
    练钦. 海南福山油田易塌层段钻井液施工技术[J]. 西部探矿工程,2010,22(168):45-49.

    LIAN Qin. Drilling fluid construction technology for collapse-prone strata in Hainan Fushan oilfield[J]. West-China Exploration Engineering,2010,22(168):45-49.
    [6]
    孙强. 论海南福山油田钻井中的几个复杂问题[J]. 石化技术,2017,24(1):93. SUN Qiang. Discussion on several complex drilling problems in Hainan Fushan oilfield[J]. Petrochemical Industry Technology,2017

    ,24(1):93.
    [7]
    崔露,曾思云,谭晓峰,等. 福山油田钻井液处理剂检测评价综述[J]. 石油工业技术监督,2016,31(216):8-11.

    CUI Lu,ZENG Siyun,TAN Xiaofeng,et al.Detection and evaluation of drilling fluid additives in Fushan oilfield[J].Technology Supervision in Petroleum Industry,2016, 31(216):8-11.
    [8]
    鄢捷年. 钻井液工艺学[M]. 东营:石油大学出版社, 2001:348-360. YAN Jienian. Drilling fluid technology[M].Dongying:Petroleum University Press,2001:348

    -360.
    [9]
    卢成海,王蛟龙,宁英辉. 福山油田H107区块提速提效钻井液施工技术[J]. 中国石油和化工标准与质量, 2014,34(401):57-59.

    LU Chenghai,WANG Jiaolong,NING Yinghui. Construction technology of drilling fluid for increasing speed and efficiency in block H107 of Fushan oilfield[J]. China Petroleum and Chemical Standard and Quality, 2014,34(401):57-59.
    [10]
    李锋. 花121-平2井钻井技术[J]. 中国石油和化工标准与质量,2014,34(404):30. LI Feng. Drilling technology of Hua121

    -Ping2 well[J]. China Petroleum and Chemical Standard and Quality, 2014,34(404):30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (473) PDF downloads(224) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return