LI Bin, JIANG Guancheng, WANG Jinxi, WANG Lan, LIU Fan, WANG Xi, YANG Lili. Development and Evaluation of a Water Base Drilling Fluid Lubricant SDL-1[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 170-175. doi: 10.3969/j.issn.1001-5620.2019.02.007
Citation: LI Bin, JIANG Guancheng, WANG Jinxi, WANG Lan, LIU Fan, WANG Xi, YANG Lili. Development and Evaluation of a Water Base Drilling Fluid Lubricant SDL-1[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 170-175. doi: 10.3969/j.issn.1001-5620.2019.02.007

Development and Evaluation of a Water Base Drilling Fluid Lubricant SDL-1

doi: 10.3969/j.issn.1001-5620.2019.02.007
  • Received Date: 2018-12-23
  • Publish Date: 2019-04-30
  • High friction and high torque are two factors restricting the use of water base drilling fluids in extended reach horizontal drilling. A water base drilling fluid lubricant SDL-1 has been developed to resolve these problems. SDL-1 is a compound of ester synthesized with long chain fatty acid and low molecular weight polyalcohol, and some extreme-pressure additives. Evaluation of SDL-1 showed that addition of 1% SDL-1 in 4% fresh water base mud reduced the coefficient of friction of the mud by 85.2% and reduced the adhesion coefficient of mud cake by 59.3%. When aging at 160℃ for 16 h, the coefficient of friction of the mud was reduced by 94.0% and the adhesion coefficient of mud cake was reduced by 62.3%. When aging at 180℃ for 16 h, the coefficient of friction of the mud was still reduced by 90.0%, indicating that SDL-1 functions effectively at 180℃. SDL-1 is able to resist contamination by 30% NaCl and 30% CaCl2. In four-ball friction test, after 30 min of friction, SDL-1 effectively reduced the amount of scratch, reducing the surface wear-and-tear. This test showed that SDL-1 is a better lubricant in friction resistant than another lubricant DFL. When treated with 2% SDL-1, the rheology of a clay-free drilling fluid of density 2.0 g/cm3 and an environmentally friendly drilling fluid of density 2.2 g/cm3 was only slightly affected, and the friction coefficient of the two drilling fluids was reduced to 0.08. SDL-1 as a lubricant shows good lubricating performance and resistance to high temperature and salt contamination, and will find its application in deep extended reach drilling.

     

  • [1]
    董兵强,邱正松,邓智,等. 钻井液用微乳液润滑剂NE的研究与应用[J]. 钻井液与完井液,2018,35(3):54-59.

    DONG Bingqiang, QIU Zhengsong, DENG Zhi, et al. Study and application of a drilling fluid microemulsion lubricant NE[J]. Drilling Fluid & Completion Fluid, 2018,35(3):54-59.
    [2]
    谢彬强,邱正松,黄维安,等. 大位移井钻井液关键技术问题[J]. 钻井液与完井液,2012,29(2):76-82.

    XIE Binqiang,QIU Zhengsong,HUANG Weian,et al. Summary on key technical issues of drilling fluid for extended reach well[J]. Drilling Fluid & Completion Fluid,2012,29(2):76-82.
    [3]
    董小强,王琳,杨小华. 水基钻井液润滑剂研究进展[J]. 中外能源,2012,17(10):28-33.

    DONG Xiaoqiang,WANG Lin,YANG Xiaohua. Advances in the lubricant of water based drilling fluid[J]. Sino-Global Energy,2012,17(10):28-33.
    [4]
    王琳,董小强,杨小华,等. 高密度钻井液用润滑剂SMJH-1的研制及性能评价[J]. 钻井液与完井液, 2016,33(1):28-32.

    WANG Lin,DONG Xiaoqiang,YANG Xiaohua,et al. Development and evaluation of a high density drilling fluid lubricant[J]. Drilling Fluid & Completion Fluid, 2016,33(1):28-32.
    [5]
    陈亮,吕忠楷. 钻井液用极压润滑剂JM-1的制备与应用[J]. 钻井液与完井液, 2016, 33(5):54-57.

    CHEN Liang,LYU Zhongkai. Development and application of drilling fluid extreme-pressure lubricant JM-1[J]. Drilling Fluid & Completion Fluid,2016, 33(5):54-57.
    [6]
    屈沅治,黄宏军,冯小华,等. 新型水基钻井液用极压抗磨润滑剂的研制[J]. 钻井液与完井液, 2018,35(1):34-37.

    QU Yuanzhi, HUANG Hongjun, WANG Bo,et al. Development of extreme pressure anti-wear lubricant MPA for water base drilling fluids[J]. Drilling Fluid & Completion Fluid,2018,35(1):34-37.
    [7]
    NAVARRO A R,DANNELS W R. Maximizing drilling operations by mitigating the adverse effects of friction through advanced drilling fluid technology[C].Houston:AADE,2011:1-7
    [8]
    AND G K,STEIDLEY K R. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity[J]. Energy Fuel,2005,19(3):1192-1200.
    [9]
    宣扬,钱晓琳,林永学,等. 水基钻井液润滑剂研究进展及发展趋势[J]. 油田化学, 2017,34(4). XUAN Yang,QIAN Xiaolin,LIN Yongxue,et al. Research progress and development trend on environmental-friendly lubricant in water-based drilling fluid[J]. Oilfield Chemistry,2017,34

    (4).
    [10]
    RUDNICK L R. Synthetics, mineral oils, and bio-based lubricants:chemistry and technology[M]. CRC Press, 2013.
    [11]
    温诗铸,黄平. 摩擦学原理. 第3版[M]. 北京:清华大学出版社,2008. WEN Shizhu,HUANG Ping. Principles of Tribology (3rd)[M]. Beijing:Tsinghua University Press,2008.
    [12]
    CHENG H, HU Y. Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubr i c a t ion[J]. Advanc e s i n Colloid & Interface Science, 2012, 171-172(1):53-65.
    [13]
    杨宏伟,杨士亮,孙世安,等. 极压抗磨剂的发展现状及作用机理研究[J]. 当代化工, 2012(9):961-963. YANG Hongwei,YANG Shiliang,SUN Shian,et al. Research on developing status and mechanism of extremepressure and anti-wear additives[J].Contemporary Chemical Industry,2012

    (9):961-963.
    [14]
    魏昱,王骁男,安玉秀,等. 钻井液润滑剂研究进展[J]. 油田化学, 2017(4):727-733. WEI Yu,WANG Xiaonan,AN Yuxiu,et al. Research development of drilling fluid lubricant[J]. Oilfield Chemistry,2017

    (4):727-733.
    [15]
    DONG X, WANG L, YANG X, et al. Effect of ester based lubricant SMJH-1 on the lubricity properties of water based drilling fluid[J]. Journal of Petroleum Science & Engineering, 2015, 135:161-167.
    [16]
    王慰祖. 边界润滑条件下吸附膜机理的理论与实验研究[D]. 华南理工大学, 2006 WANG Weizu. Theoretical and experimental study on mechanism of adsorption film under the state of boundary lubrication[D]. South China University of Technology, 2006.
  • Relative Articles

  • Cited by

    Periodical cited type(21)

    1. 王中华. 国内钻井液处理剂研究进展、现状分析与发展建议. 钻井液与完井液. 2025(01): 1-19 . 本站查看
    2. 黄云,雷庆虹. 适用于页岩气水平井新型水基钻井液室内研究. 化学工程师. 2023(01): 50-53 .
    3. 宁新军,姬文钰,潘谦宏,都伟超,刘雄雄. 水基钻井液用环保型润滑剂的研究综述. 化工技术与开发. 2023(08): 28-32 .
    4. 侯彬彬,董丽娜,高利军,平园园,段涛涛. 环保型钻井液液体润滑剂研究进展. 化学工程师. 2023(08): 88-92 .
    5. 贾佳,蒋官澄,夏忠跃,冯雷. 临兴区块钻井液仿生润滑剂研究和应用. 非常规油气. 2022(01): 105-111 .
    6. 王中华. 2017~2021年国内钻井液处理剂研究进展. 中外能源. 2022(03): 31-42 .
    7. 贾佳,夏忠跃,冯雷,李建,王烊. 鄂尔多斯盆地神府区块小井眼优快钻井关键技术. 石油钻探技术. 2022(02): 64-70 .
    8. 袁志平,景岷嘉,王宝刚. 一种凸显水基与油基钻井液润滑性能差异性的室内评价方法. 广东化工. 2022(11): 114-116+113 .
    9. 张雁,屈沅治,张志磊,王韧,程荣超,杨峥. 超高温水基钻井液技术研究现状及发展方向. 油田化学. 2022(03): 540-547 .
    10. 于洪江,张美画,杜春保,高明慧,常紫汐. 水基钻井液防泥包润滑剂的性能评价与机理分析. 西安石油大学学报(自然科学版). 2022(06): 91-96 .
    11. 张顺从,戴尧,徐浩,王继乾,卢福伟,刘桂英. 油酸酰胺型润滑剂在铁表面减摩作用. 钻井液与完井液. 2022(05): 596-600 . 本站查看
    12. 刘宇龙,熊青山. 环保型钻井液添加剂的优选及性能评价实验. 当代化工. 2021(04): 892-895 .
    13. 秦波波,王涛,王春雷,申效连,苗志鹏. 钻井液用高效润滑剂RYJ的研发及应用. 山东化工. 2021(09): 107-109 .
    14. 秦国川,许明标,何淼,杜佳琪,倪超武. 聚合醇在钻井液中的应用研究进展. 高分子通报. 2021(05): 65-73 .
    15. 魏佳怡,李月红,于文婧,高艳,吴雪,刘雄雄,张洁. 环保型水基钻井液润滑剂的研究进展. 化工技术与开发. 2021(06): 36-40 .
    16. 陈斌,周姗姗,赵远远,覃建宇,饶志华,狄明利,左坤. 适用于大位移井新型水基钻井液室内研究. 钻井液与完井液. 2021(01): 42-46 . 本站查看
    17. 耿月,刘洪山,何振涛,李晓宏,高红茜. 新型环保润滑剂的制备及其在页岩气水基钻井液中的应用. 钻采工艺. 2021(03): 92-95 .
    18. 贾佳,夏忠跃,冯雷,王烊,李建. 神府区块高效钻井及配套技术研究与应用. 录井工程. 2021(02): 102-108 .
    19. 宋海,龙武,邓雄伟. 页岩气水基钻井液用抗高温环保润滑剂的研制及应用. 断块油气田. 2021(06): 761-764 .
    20. 单锴,邱正松,钟汉毅,赵欣,周柯任,张民立,张现斌,王磊磊. 高温高矿化度高密度水基钻井液用润滑剂. 钻井液与完井液. 2020(04): 450-455 . 本站查看
    21. 姚倩,许明标,由福昌. 硅酸盐钻井液泥包形成的趋势研究. 钻井液与完井液. 2019(06): 700-705 . 本站查看

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1547) PDF downloads(283) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return