ZHU Xuefei, SUN Jun, XU Sixu, LIU Haofeng, ZHA Lingfei. Treatment of CO32- and HCO3- Contamination in Water Base Drilling Fluid Used in Drilling the 3rd Interval of the Well HT2[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(1): 36-40. doi: 10.3969/j.issn.1001-5620.2019.01.007
Citation: ZHU Xuefei, SUN Jun, XU Sixu, LIU Haofeng, ZHA Lingfei. Treatment of CO32- and HCO3- Contamination in Water Base Drilling Fluid Used in Drilling the 3rd Interval of the Well HT2[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(1): 36-40. doi: 10.3969/j.issn.1001-5620.2019.01.007

Treatment of CO32- and HCO3- Contamination in Water Base Drilling Fluid Used in Drilling the 3rd Interval of the Well HT2

doi: 10.3969/j.issn.1001-5620.2019.01.007
  • Received Date: 2018-09-15
  • Publish Date: 2019-02-28
  • During drilling of the φ311.1 mm section between 4513 m and 5785 m of the well HT2, invasion of anions from the Donghe sandstones (main pay zone of the Hetianhe gas field) and the non-productive Ordovician limestone and dolomite caused CO32- and HCO3- contamination to the drilling fluid used for 140 d. Calcium concentration in the drilling fluid were always zero throughout the section. The drilling fluid was required to have high viscosity (funnel viscosity = 120-150 sec) high gel strength (10 sec/10 min gel strengths =(4-5) Pa/(15-25) Pa) to clean the hole because of three times of pipe sticking in broken formation sections, and this high viscosity/high gel strength caused the drilling fluid to have difficulties degassing and pumping. The rheology of the drilling fluid were then becoming difficult to control, finally the drilling fluid turned to a jelly state at high temperatures which no technical articles can be used for reference. In the early stage, quicklime, calcium chloride, organic salts and nanophase emulsion were introduced into the drilling fluid for property maintenance, and in the later stage, the properties of the drilling fluid were maintained with high concentration sulfonated polymer solution and alkaline liquor, without the addition of thinners in the drilling fluid. The properties of the drilling fluid were thus maintained stable through the whole section, ensuring safe drilling and realizing the geological goals expected.

     

  • [1]
    马慧, 朱成军. 超细水泥处理深井钻井液HCO3-和CO32-污染[J]. 钻井液与完井液,2011,28(3):88-91.

    MA Hui,ZHU Chengjun.Ultra-fine cement treatment of HCO3-and CO32-contamination of drilling fluids in deep Wells[J]. Drilling Fluid & Completion Fluid,2011,28(3):88-91.
    [2]
    陈馥,杨媚,艾加伟,等. 水钻井液CO2污染的处理[J]. 钻井液与完井液,2016,33(6):58-62.

    CHEN Fu, YANG Mei, AI Jiawei, et al.Treatment of CO2 pollution from water drilling fluids[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):58-62.
    [3]
    冯丽,雷伏涛,祝学飞,等. 碳酸根、碳酸氢根污染的钻井液处理及机理研究[J]. 天然气与石油,2015, 33(2):53-55.

    FENG Li,LEI Futao,ZHU Xuefei,et al. Study on drilling fluid treatment and mechanism of carbonate and hydrogen carbonate[J]. Natural Gas and Oil, 2015,33(2):53-55.
    [4]
    刘涛,杨文华,苟建,等. 风城井区钻井液抗CO32-污染分析[J]. 新疆石油科技,2010,20(2):6-8.

    LIU Tao,YANG Wenhua,GOU Jian, et al.Fengcheng well area drilling fluid resistance CO32-pollution analysis[J]. Xinjiang Petroleum Technology, 2010, 20(2):6-8.
    [5]
    管盛强, 陈礼仪, 张林生, 等. 汶川科钻WFSD-4孔钻井液CO2污染及其处理[J]. 探矿工程, 2014, 41(4):14-18.

    GUAN Shengqiang, CHEN Liyi,ZHANG Linsheng, et al.Wenchuan drilling WFSD-4 hole drilling fluid CO2 pollution and its treatment[J].Prospecting Works,2014, 41(4):14-18.
    [6]
    崔文峰, 牛全印. 高钙盐钻井液在塔河油田TK909H井的应用[J].钻井液与完井液, 2006, 23(4):38-41

    ,92. CUI Wenfeng, NIU Quanyin. Application of highcalcium salt drilling fluid in TK909H well in Tahe oilfield[J] Drilling Fluid & Completion Fluid, 2006, 23(4):38-41,92.
    [7]
    孙玉学,王桂全,王瑛琪. 有机硅钻井液CO2钻井液污染及处理室内试验[J]. 科学技术与工程,2010,10(10):2442-2444

    ,2449. SUN Yuxue,WANG Guiquan, WANG Yingqi. Organic silicon drilling fluid CO2 drilling fluid pollution and treatment of indoor tests[J].Science,Technology and Engineering, 2010,10(10):2442-2444,2449.
    [8]
    中华人民共和国国家标准.GB/T 16783.1-2014/IS010414-1:2008石油天然气工业钻井液现场测试第1部分:水基钻井液[S]. 北京:中国标准出版社,2014. National standards of the People's Republic of China. GB/T 16783.1-2014

    /IS 010414-1:2008 oil and gas industry drilling fluids field test part 1:water-based drilling fluids[S]. Beijing:China Standard Publishing House, 2014.
    [9]
    刘佑云. 深井钻井液碳酸根和碳酸氢根污染的处理[J]. 石油与天然气化工,2012,41(1):104-106

    ,118. LIU Youyun. Treatment of carbonate and hydrogen carbonate contamination in drilling fluids in deep wells[J]. Petroleum and Natural Gas Chemistry, 2012,41(1):104-106,118.
    [10]
    王宝堂. 纳米钻井液技术现状[J]. 非常规油气,2016, 3(5):134-138.

    WANG Baot ang. Status of nano drilling fluid technology[J]. Unconventional Oil and Gas, 2016,3(5):134-138.
    [11]
    祝学飞,周华安,孙俊,等.CT1井盐膏层钻井液技术[J]. 天然气与石油,2017,35(4):88-92.

    ZHU Xuefei, ZHOU Huaan,SUN Jun, et al.CT1 well salt-layer drilling fluid technology[J].Natural Gas and Oil, 2017, 35(4):88-92.
    [12]
    晏军,于长海,梁冲,等. 纳米石蜡乳液封堵材料的合成与性能评价[J]. 钻井液与完井液,2018,35(2) 73-77.

    YAN Jun,YU Changhai,LIANG Chong,et al. Synthesis and performance evaluation of nanometer paraffin emulsion plugging materials[J]. Drilling Fluid & Completion Fluid, 2008,35(2):73-77.
    [13]
    陈斌,赵雄虎,李外,等. 纳米技术在钻井液中的应用进展[J]. 石油钻采工艺,2016,38(3):315-321.

    CHEN Bin, ZHAO Xionghu, LI Wai, et al. Application of nano technology to drilling fluid[J]. Oil Drilling & Production Technology, 2016, 38(3):315-321.
    [14]
    宋洵成,王鹏,张宇,等. 安探4X井低固相超高温钻井液技术[J]. 钻井液与完井液,2018,35(2):40-43.

    SONG Xuncheng, WANG Peng,ZHANG Yu, et al. Drilling fluid technology of low solid phase ultra-high temperature in Antan 4X wells[J]. Drilling Fluid & Completion Fluid, 2008,35(2):40-43.
    [15]
    褚祖礼.有机盐钻井液[J].化工之友, 2007(3):42-43. CHU Zuli. There is a salt drilling fluid[J].Friends of Chemicals, 2007

    (3):42-43.
    [16]
    樊相生,马洪会,冉兴秀. 马深1超深井四开钻井液技术[J]. 钻井液与完井液,2017,34(2):57-63.

    FAN Xiangsheng,MA Honghui, RAN Xingxiu. Drilling fluid technology of the 4-hole drilling fluid in the 1st ultradeep well of Mashen[J]. Drilling Fluid & Completion Fluid,2017,34(2):57-63.
    [17]
    罗人文,龙大清,王昆,等. 马深1井超深井钻井液技术[J]. 石油钻采工艺,2016,38(5):588-593.

    LUO Renwen, LONG Daqing, WANG Kun, et al. Drilling fluid for the super-deep Well Mashen-1[J]. Oil Drilling & Production Technology,2016,38(5):588-593.
    [18]
    刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用[J]. 石油钻探技术,2018,46(5):35-39.

    LIU Yonggui. Optimization and application of high performance water-based drilling fluid for horizontal wells in Daqing Tight Oil Reservoir[J]. Petroleum Drilling Techniques,2018,46(5):35-39.
    [19]
    贾俊, 赵向阳, 刘伟.长庆油田水基环保成膜钻井液研究与现场试验[J]. 石油钻探技术, 2017, 45(5):36-42.

    JIA Jun, ZHAO Xiangyang, LIU Wei. Research and field test of water-based environmental-friendly membrane forming drilling fluid technology in Changqing Oilfield[J]. Petroleum Drilling Techniques,2017,45(5):36-42.
  • Relative Articles

    [1]BIN Yujie, HAN Xiaoyang, TIAN Zhenrui, WU Zhiying, ZHANG Siqi, FANG Bo, LU Yongjun. Rheology of a Viscoelastic Hexameric Cationic Surfactant Micellar Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2025, 42(2): 262-274. doi: 10.12358/j.issn.1001-5620.2025.02.015
    [2]YANG Zhaoliang, LIU Sen, SHEN Xinyu, LUO Yueyao, ZHANG Yuting. Mechanisms of Cement Slurry Contamination by Drilling Fluid Filtration Agents and Measures of Preventing the Contamination[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(6): 792-799. doi: 10.12358/j.issn.1001-5620.2024.06.013
    [3]GAO Hang, FANG Bo, XU Ke, LU Yongjun, YU Luyao, LIU Boxiang. Study on Relationship between Rheology of HPAM Solution and Friction Reduction[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(1): 100-106. doi: 10.12358/j.issn.1001-5620.2022.01.017
    [4]XIE Chunlin, YANG Lili, JIANG Guancheng, AO Tian, CAO Feng, HE Yinbo, NIE Qiangyong. Rheological Characteristics of Oil Base Drilling Fluids and Its Mathematical Model under Coupled HTHP Conditions[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(5): 568-575. doi: 10.12358/j.issn.1001-5620.2021.05.005
    [5]ZHANG Xiayu, AI Zhengqing, WEN Zhiming, ZHANG Feng, XU Liqun, LIU Rui, ZHANG Xingguo. Research for low shear rheological properties of low return velocity cementing drilling fluid in Kuqa Piedmont[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(4): 492-498. doi: 10.3969/j.issn.1001-5620.2021.04.015
    [6]ZHAO Suli. A Drilling Fluid Gelling Agent Synthesized with Pentaerythritol as Branching Agent[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 282-287. doi: 10.3969/j.issn.1001-5620.2020.03.003
    [7]HUANG Tao, FAN Xiangsheng, TAO Weidong, XIE Gangjin. Rheology Control and Application of Ultra-High-Density Compound Brine Drilling Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 153-159. doi: 10.3969/j.issn.1001-5620.2020.02.004
    [8]ZHU Xuefei, XI Yunfei, YOU Wei. Treatment of Aluminum Sulphate Contamination to Water Base Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(2): 192-195. doi: 10.3969/j.issn.1001-5620.2020.02.010
    [9]LAN Chengcheng, FANG Bo, LU Yongjun, QIU Xiaohui. Rheology of Triisopropanolamine Modified Xanthan Water Solution[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 371-377. doi: 10.3969/j.issn.1001-5620.2019.03.019
    [10]ZHOU Haobo. A Method of Predicting High Temperature High Pressure Rheological Property Based on Viscometer Readings[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 325-332. doi: 10.3969/j.issn.1001-5620.2019.03.011
    [11]XIONG Xiaofei, JIANG Tingxue, JIA Wenfeng, ZHONG Ziyao. Experimental Study on Rheology of Sand-content Fracturing Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 114-119,125. doi: 10.3969/j.issn.1001-5620.2018.04.021
    [12]XIANG Chaogang, CHEN Junbin, WANG Long. Analyses of the Effects of CO2 on the Properties of High-Density Water Base Drilling Fluid and the Mechanisms of the Effects[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(5): 26-30,35. doi: 10.3969/j.issn.1001-5620.2018.05.005
    [13]LI Guangji, ZHANG Minli, LI Shufeng, WANG Feng, HAO Shaojun, WANG Wei, LI Qiuming. Drilling Fluid Technology for “Four-High” Well Yantan-1[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 20-27. doi: 10.3969/j.issn.1001-5620.2018.04.004
    [14]LIU Shuang, ZHANG Hong, FANG Bo, LU Yongjun, QIU Xiaohui, ZHAI Wen. Carboxymethyl Hydroxypropyl Xanthan Gum and Its Rheological Properties[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(5): 106-110,116. doi: 10.3969/j.issn.1001-5620.2017.05.020
    [15]CUI Huijie, CUI Yanzhao, CAO Jingzhi, QIU Shoumei, ZHANG Li'na, WU Youmei. Study and Application of an InstantPolymer Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(6): 117-121. doi: 10.3969/j.issn.1001-5620.2017.06.022
    [16]XU Bihua, FENG Qinghao, XIE Yingquan, YANG Yuhao. A Method of Calculating Rheology of Cement Slurry Affected by Circulation Temperature[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(6): 79-82. doi: 10.3969/j.issn.1001-5620.2017.06.015
    [17]PENG Fei, FANG Bo, LU Yongjun, QIU Xiaohui, HUANG Caihe, LIU Yuting. Rheology and Drag Reduction of Hydrophobic Amphoteric Quadripolymer Solution[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(1): 92-96. doi: 10.3969/j.issn.1001-5620.2016.01.019
    [18]LIU Baoshuang, WANG Zhongjie, MA Yunqian, LUO Yunfeng, LIU Zunnian, SUN Jianmeng. New Method of Online Measurement of Drilling Fluid Rheology[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(4): 56-59. doi: 10.3969/j.issn.1001-5620.2016.04.011
    [19]JIA Shuai, QIN Wenlong, YANG Jiang, LIU Xuan, ZHOU Yining. Effect of Nano ZnO on Rheology of CTAC Wormlike Micelle[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(2): 106-110,116. doi: 10.3969/j.issn.1001-5620.2016.02.023
    [20]HAN Xiuzhen, WANG Xianguang, LI Sheng, JU Liuzhu, YANG Xiaohua, LIN Yongxue. A Low Viscosity High Gel Strength Oil Base Drilling Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(3): 16-19. doi: 10.3969/j.issn.1001-5620.2015.03.005
  • Cited by

    Periodical cited type(7)

    1. 厉明伟. 水基钻井液碳酸根离子含量检测失真原因分析及改进方法. 中国井矿盐. 2025(01): 31-33+39 .
    2. 胡金喜. 钻井液受碳酸(氢)根污染研究现状及建议. 西部探矿工程. 2024(01): 24-26 .
    3. 严平. 高密度钻井液酸性气体污染研究进展. 化工管理. 2024(04): 79-83 .
    4. 祝学飞,杨坤,徐思旭,孙俊,冯勇,席云飞,黄念义. 重力置换解卡与低摩阻钻井液在ST2-4井的应用. 钻井液与完井液. 2023(05): 617-621 . 本站查看
    5. 孙俊,祝学飞,付强,徐思旭,严羿,查凌飞,黄念义. 塔中油田西部区块目的层钻井液复杂处理工艺. 西部探矿工程. 2022(01): 109-111+119 .
    6. 李文涛. 四川页岩气井碳酸根/碳酸氢根污染问题的处理实践. 钻井液与完井液. 2022(01): 53-58 . 本站查看
    7. 祝学飞,席云飞,游伟. 水基钻井液硫酸铝污染处理工艺. 钻井液与完井液. 2020(02): 192-195 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (860) PDF downloads(226) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return