Volume 35 Issue 5
Sep.  2018
Turn off MathJax
Article Contents
XIONG Zhengqiang, LI Xiaodong, FU Fan, LI Yanning. Mechanisms of Synthetic Hectorite to Viscosify Ultra-high Temperature Water Base Muds[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(5): 19-25. doi: 10.3969/j.issn.1001-5620.2018.05.004
Citation: XIONG Zhengqiang, LI Xiaodong, FU Fan, LI Yanning. Mechanisms of Synthetic Hectorite to Viscosify Ultra-high Temperature Water Base Muds[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(5): 19-25. doi: 10.3969/j.issn.1001-5620.2018.05.004

Mechanisms of Synthetic Hectorite to Viscosify Ultra-high Temperature Water Base Muds

doi: 10.3969/j.issn.1001-5620.2018.05.004
  • Received Date: 2018-05-23
  • Publish Date: 2018-09-30
  • Polymers are generally used for viscosifying water base drilling fluids, but their tolerance to high temperature is not suffcient to meet the requirements of ultra-high temperature water base drilling fluids. It is thus proposed that artifcial hectorite can be used as an ultra-high temperature viscosifer for water base drilling fluids. Characterization of the structure of the synthesized hectorite with X-ray powder diffraction and TGA showed that the synthesized hectorite, H-6, has excellent viscosifying property and thermal stability; it is able to function normally at temperature of up to 240℃, and its viscosifying effect at high temperature is superior to other high temperature viscosifers presently used worldwide. Testing of a 4% sodium-bentonite water base mud treated with 1% H-6 showed that after aging at 240℃ for 16 hours, the water base mud had the same apparent viscosity of 16.5 mPa·s, before and after aging. As a comparison, another 4% sodium-bentonite water base mud treated with 1% HE300, a high temperature viscosifer, had its viscosity reduced by at least 92% after aging at 240℃ for 16 hours. Laboratory study showed that H-6 is compatible well with other commonly used additives, and is suitable for use in water base drilling fluids as an ultra-high temperature viscosifer. It will fnd wide application in formulating ultra-high temperature water base drilling fluids.

     

  • loading
  • [1]
    GUVEN N, PANFIL D J, CARNEY L L. Comparative rheology of water-based drilling fluids with various clays[C]. SPE 17571, 1988.
    [2]
    KELESSIDIS V C, CHRISTIDIS G, MAKRI P, et al. Gelation of water-bentonite suspensions at high temperatures and rheological control with lignite addition[J]. Applied Clay Science, 2007, 36(4):221-231.
    [3]
    施里宇, 李天太, 张喜凤, 等. 温度和膨润土含量对水基钻井液流变性的影响[J]. 石油钻探技术, 2008, 36(1):20-22.

    SHI Liyu, LI Tiantai, ZHANG Xifeng, et al. Effects of temperature and clay content on water-based drilling fluids rheological property[J]. Petroleum Drilling Techniques, 2008, 36(1):20-22.
    [4]
    张斌. 超深井超高温钻井液技术研究[D]. 北京:中国地质大学(北京), 2010. ZHANG Bin. The research on drilling fluid technology under ultra-deep well and ultra-temperature[D]. Beijing:China University of Geosciences, 2010.
    [5]
    单文军, 陶士先, 付帆, 等. 抗240℃ 高温水基钻井液体系的室内研究[J]. 钻井液与完井液, 2014, 31(5):10-13.

    SHAN Wenjun, TAO Shixian, FU Fan, et al. High temperature drilling fluid technology[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):10-13.
    [6]
    许洁, 乌效鸣, 朱永宜, 等. 抗240℃超高温水基钻井液室内研究[J]. 钻井液与完井液, 2015, 32(1):10-13.

    XU Jie, WU Xiaoming, ZHU Yongyi, et al. Laboratory study on ultra high temperature water base mud[J].Drilling Fluid & Completion Fluid, 2015, 32(1):10-13.
    [7]
    张丽君, 王旭, 胡小燕, 等. 抗260℃超高温水基钻井液体系[J]. 钻井液与完井液, 2015, 32(4):5-8.

    ZHANG Lijun, WANG Xu, HU Xiaoyan, et al. Ultrahigh temperature water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):5-8.
    [8]
    郑文龙, 乌效鸣, 朱永宜, 等. 松科2井特殊钻进工艺下钻井液技术[J]. 石油钻采工艺, 2015, 37(3):32-35.

    ZHENG Wenlong, WU Xiaoming, ZHU Yongyi, et al. Drilling fluid technique for special drilling technology in SK-2 Well[J].Oil Drilling & Production Technology, 2015, 37(3):32-35.
    [9]
    黄熠. 南海高温高压勘探钻井技术现状及展望[J]. 石油钻采工艺, 2016, 38(6):737-745.

    HUANG Yi. Drilling technology for HTHP exploration in South China Sea and its prospect[J]. Oil Drilling & Production Technology, 2016, 38(6):737-745.
    [10]
    THAEMLITZ C J. Synthetic filtration control polymers for wellbore fluids:USA, 7098171[P]. 2006-8-29.
    [11]
    YAN L, WANG C B, XU B, et al. Preparation of a novel amphiphilic comb-like terpolymer as viscosifying additive in low-solid drilling fluid[J]. Materials Letters, 2013(105):232-235.
    [12]
    闫丽丽, 孙金声, 王建华, 等. 新型抗高温抗盐钻井液增黏剂PADA的制备与性能[J]. 石油学报(石油加工), 2013, 29(3):464-469. YAN Lili, SUN Jinsheng, WANG Jianhua, et al. Preparation and properties of heat- and salt-tolerant viscosity improver PADA in water -based drilling fluid[J]. Acta Petroleum Sinica(Petroleum Processing Section), 2013, 29(3):464-469.
    [13]
    谢彬强, 邱正松. 无固相钻井液超高温增黏剂SDKP的结构、性能及应用[J]. 油田化学, 2014, 31(4):481-487.

    XIE Bingqiang, QIU Zhengsong. Structure, property and application of ultra-high temperature viscosifier SDKP for solid-free drilling fluid[J]. Oilfield Chemistry, 2014, 31(4):481-487.
    [14]
    薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术, 2016, 44(6):67-73.

    XUE Wenjia. Synthesis and properties of high temperature resistance and environmental-friendly viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6):67-73.
    [15]
    吴爽. 辽河油田无固相强抑制水基钻井液技术[J]. 石油钻探技术, 2017, 45(6):42-48.

    WU Shuang. Solid-free and strongly inhibitive waterbased drilling fluid in the Liaohe Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6):42-48.
    [16]
    邱正松, 毛惠, 谢彬强, 等. 抗高温钻井液增黏剂的研制及应用[J]. 石油学报, 2015, 36(1):106-113.

    QIU Zhengsong, MAO Hui, XIE Binqiang, et al. Synthesis and field application of high temperature resistant viscosifying agent for drilling fluid[J]. Acta Petroleum Sinica, 2015, 36(1):106-113.
    [17]
    薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术, 2016, 44(6):67-73.

    XUE Wenjia. Synthesis and properties of high temperature resistance and environmental-friendly viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6):67-73.
    [18]
    刘建军, 刘晓栋, 马学勤, 等. 抗高温耐盐增黏剂及其无固相钻井液体系研究[J]. 钻井液与完井液, 2016, 33(2):5-11.

    LIU Jianjun, LIU Xiaodong, MA Xueqin, et al. Study on high temperature salt-resistant viscosifier and the formulated solids-free drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(2):5-11.
    [19]
    TEHRANI A, GERRARD D, YOUNG S, et al. Environmentally friendly water based fluid for HT/HP drilling[C]. SPE 121783, 2009.
    [20]
    覃勇, 马克迪, 蒋官澄. 水基钻井液用锂皂石增黏剂的合成及性能研究[J]. 钻井液与完井液, 2016, 33(3):20-24.

    QIN Yong, MA Kedi, JIANG Guancheng. Synthesis and study on hectorite viscosifier used in water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(3):20-24.
    [21]
    MUELLER H, HEROLD C P, DOLHAINE H, et al. Water-based drilling and well-servicing fluids with swellable, synthetic layer silicates:USA, 4888120[P]. 1989-12-19.
    [22]
    AU P I, HASSAN S, LIU J, et al. Behaviour of LAPONITE® gels:Rheology, ageing, pH effect and phase state in the presence of dispersant[J]. Chemical Engineering Research and Design, 2015, 101:65-73.
    [23]
    PEK-ING A, YEE-KWONG L. Surface chemistry and rheology of Laponite dispersions-Zeta potential, yield stress, ageing, fractal dimension and pyrophosphate[J]. Applied Clay Science, 2015, 107:36-45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (886) PDF downloads(220) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return