Volume 35 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
HUANG Bo, XU Jianping, JIANG Guancheng, WANG Qiaozhi, SU Yanhui, BAI Xiangshuang. Numerical Simulation of Formation Damage by Clay Swelling[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 126-132. doi: 10.3969/j.issn.1001-5620.2018.04.023
Citation: HUANG Bo, XU Jianping, JIANG Guancheng, WANG Qiaozhi, SU Yanhui, BAI Xiangshuang. Numerical Simulation of Formation Damage by Clay Swelling[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 126-132. doi: 10.3969/j.issn.1001-5620.2018.04.023

Numerical Simulation of Formation Damage by Clay Swelling

doi: 10.3969/j.issn.1001-5620.2018.04.023
  • Received Date: 2018-02-25
  • Publish Date: 2018-07-30
  • In drilling, well completion or water injection operations, clays in formation rocks may swell when in contact with water base fluids, causing formation damage. Many studies have been conducted on formation damage caused by clay swelling, the numerical studies on the changing pattern of swelling with time and in space are scarcely seen. In our laboratory studies, a mathematical model has been established based on osmotic hydration of clay and the Fick diffusion of water molecules. Using this model, the changing pattern of the non-dimensional permeability of rocks around a wellbore with time and space was simulated, and the change of skin factor with time was calculated. It was demonstrated that the swelling of swelling has the characteristics of fast increase in the early stage, and slow increase to increase ceasing in the middle and late stages, meaning that formation damage is mainly contributed by the early swelling. At a certain point in the reservoir, the permeability impairment may be small, the formation damage is spatially extended, far from its origin, several meters, for instance, causing remarkable damage to the permeability of reservoir formations. To sum up, this study, based on simplified mathematic model, quantitatively simulated the spatial characteristics of the swelling of clays around a wellbore, and the swelling pattern of the clays with time, realizing the space-time dynamic simulation of single-factor controlled formation damage. The studies shed light on field engineering practices.

     

  • loading
  • [1]
    FARUK CIVAN. Reservoir formation damage:fundamentals, modeling, assessment, and mitigation (2nd edition)[M]. Burlington, MA, USA:Gulf Professional Publishing, 2007.
    [2]
    鞠斌山, 马明学, 邱晓燕. 弹性多孔介质粘土膨胀和微粒运移的数学模拟方法[J]. 水动力学研究与进展, 2003, 18(1):8-15.

    JU Binshan, MA Mingxue, QIU Xiaoyan. The mathematical simulation method of migration of fines and clay swell in elastic porous medium[J]. Journal of Hydrodynamics, 2003, 18(1):8-15.
    [3]
    许青林, 王松, 胡三清. 评价粘土膨胀与微粒运移对储层渗透率影响的数值方法[J]. 钻井液与完井液, 1999, 16(5):1-3.

    XU Qinglin, WANG Song, HU Sanqing. The numerical method for estimating the effcct of clay swelling and fines migration on permeability[J]. Drilling Fluid & Completion Fluid, 1999, 16(5):1-3.
    [4]
    杜德林, 樊世忠, Chenevert Martin E. 水基流体中页岩的渗透水化[J]. 钻井液与完井液, 1996, 13(3):5-10.

    DU Delin, FAN Shizhong, Chenevert Martin E. Study on the osmotic hydration of shale in water-based fluid[J]. Drilling Fluid & Completion Fluid, 1996, 13(3):5-10.
    [5]
    毕博. 泥页岩渗透水化作用对井壁稳定的影响[J]. 钻井液与完井液, 2011, 28(S0):1-3.

    BI Bo. Research on borehole stability affected by shale penetration and hydration[J]. Drilling Fluid & Completion Fluid, 2011, 28(S0):1-3.
    [6]
    刘令云, 陆芳琴, 闵凡飞, 等. 微细高岭石颗粒表面水化作用机理研究[J]. 中国矿业大学学报, 2016, 45(4):814-820.

    LIU Lingyun, LU Fangqin, MIN Fanfei, et al. Hydration mechanism of fine kaolinite particles in different electrolyte aqueous solutions[J]. Journal of China University of Mining & Technology, 2016, 45(4):814-820.
    [7]
    彭陈亮, 闵凡飞, 赵晴. 微细矿物颗粒表面水化膜研究现状及进展综述[J]. 矿物学报, 2012, 32(4):515-522.

    PENG Chenliang, MIN Fanfei, ZHAO Qing. A review:research status and progress on hydration layers near fine mineral particles[J]. Acta Mineralogica Sinica, 2012, 32(4):515-522.
    [8]
    陈济美, 汪昌秀. 钠化累托石造浆性能试验探讨[J]. 非金属矿, 2002, 25(5):13-15.

    CHEN Jimei, WANG Changxiu. Experimental study on mud-making performance of sodium rectorite[J]. Nonmetallic Mines, 2002, 25(5):13-15.
    [9]
    刘德胜, 徐学兵, 李济生, 等. 严重造浆地层高密度钻井液技术研究与应用[J]. 钻井液与完井液, 2006, 23(5):4-7.

    LIU Desheng, XU Xuebing, LI Jisheng,et al. Research and application of heavy mud technology in strong mudmaking formations[J]. Drilling Fluid & Completion Fluid, 2006, 23(5):4-7.
    [10]
    韩志昌. 黏土稳定剂合成技术研究[D]. 浙江:浙江大学, 2003. HAN Zhichang. The synthesis technique of clay stabilizer[D]. Zhejiang:Zhejiang University, 2003.
    [11]
    孙明波, 侯万国, 孙德军,等. 钾离子稳定井壁作用机理研究[J]. 钻井液与完井液, 2005, 22(5):7-9.

    SUN Mingbo, HOU Wanguo, SUN Dejun,et al. Mechanism study on the potassium ion stabilizing wellbore[J]. Drilling Fluid & Completion Fluid, 2005, 22(5):7-9.
    [12]
    李先杰, 岳湘安, 张宏方, 等. 外加直流电场下黏土矿物的膨胀特性研究[J]. 矿物学报, 2007, 27(1):1-5.

    LI Xianjie, YUE Xiang'an, ZHANG Hongfang,et al. Expansion characteristics of clay minerals under the applied direct current electric field[J]. Acta Mineralogica Sinica, 2007, 27(1):1-5.
    [13]
    王进, 曾凡桂, 王军霞. 钠蒙脱石水化膨胀和层间结构的分子动力学模拟[J]. 硅酸盐学报, 2005, 33(8):996-1001.

    WANG Jin, ZENG Fangui, WANG Junxia. Molecular dynamics simulation for hydration swelling and interlayer structure of Na-Montmorillonite[J]. Journal of the Chinese Ceramic Society, 2005, 33(8):996-1001.
    [14]
    CRANK J. The mathematics of diffusion(2nd edition)[M]. Oxford, UK:Clarendon Press, 1975.
    [15]
    ATHANASIOS I, LIAPIS, BRIAN A GRIMES. Film mass transfer coefficient expressions for electroosmotic flows[J]. Journal of Colloid and Interface Science, 2000, 229:540-543.
    [16]
    张元林. 工程数学:积分变换(第四版)[M]. 北京:高等教育出版社, 2003. ZHANG Yuanlin. Engineering Mathematics:Integral Transformation(Fourth Edition)[M]. Beijing:Higher Education Press, 2003.
    [17]
    CHANG F F, FARUK CIVAN. Practical model for chemically induced formation damage[J]. Journal of Petroleum Science and Engineering, 1997, 17:123-137.
    [18]
    FARUK CIVAN. Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport[J]. Transport in Porous Media, 2010, 85:233-258.
    [19]
    MICHAEL J ECONOMIDES, A DANIEL HILL, CHRISTINE EHLIG-ECONOMIDES,et al. Petroleum production systems(2nd edition)[M]. Upper Saddle River, NJ, USA:Prentice Hall, 2013.
    [20]
    BRIAN BERKOWITZ, ANDREA CORTIS, MARCO DENTZ,et al. Modeling non-Fickian transport in geological formations as a continuous time random walk[J]. Reviews of Geophysics, 2006, 44(RG2003):1-49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (479) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return