Volume 35 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
XIONG Xiaofei, JIANG Tingxue, JIA Wenfeng, ZHONG Ziyao. Experimental Study on Rheology of Sand-content Fracturing Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 114-119,125. doi: 10.3969/j.issn.1001-5620.2018.04.021
Citation: XIONG Xiaofei, JIANG Tingxue, JIA Wenfeng, ZHONG Ziyao. Experimental Study on Rheology of Sand-content Fracturing Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 114-119,125. doi: 10.3969/j.issn.1001-5620.2018.04.021

Experimental Study on Rheology of Sand-content Fracturing Fluids

doi: 10.3969/j.issn.1001-5620.2018.04.021
  • Received Date: 2018-02-18
  • Publish Date: 2018-07-30
  • Fracturing fluids with proppants are commonly used in field operations for better fracturing efficiency. Study on the rheological pattern of sand-content fracturing fluids is expected to provide a better theoretical basis on which accurate prediction of the sand carrying capacity of fracturing fluids in pipe and in fracture can be made. Taking the fracturing fluid and the sands in it as a whole, the mixed fluids were studied for the patterns and mechanisms of the change of apparent viscosity with shearing rate. It was found that after mixing with proppants, the viscosity of the mixture of a fracturing fluid and the proppants under certain shearing condition is lower than the viscosity of the fracturing fluid itself, the apparent viscosity first decreases with shearing strength and then increases, showing a "V" pattern. This is the result of the synergy between the change of the internal structure of the solid-liquid mixture and the disturbance of the proppant particles. The special rheological behavior of the sand-content fracturing fluids is also influenced by the concentration and particle size of the proppant and the liquid temperature. At high shearing rate, the collision of proppant particles is frequent, and the apparent viscosity of the sand-content fracturing fluid increases with the concentration of the sand. At low shearing arte, the apparent viscosity of the sand-content fracturing fluid first decreases and then increases with the concentration of the sand because of the additional shearing action of the sand particles, and the viscosity of the sand-content fracturing fluid is reversely related with the particle size of the proppant and the temperature of the fluid.

     

  • loading
  • [1]
    琚宜文,卜红玲,王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展,2014,29(4):492-506.

    JU Yiwen,BU Hongling,WANG Guochang.Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J].Advances in Earth Science, 2014,29(4):492-506.
    [2]
    蒋廷学,汪永利,丁云宏,等. 压裂方案经济优化的智能专家系统研究[J]. 石油学报,2004(1):66-69. JIANG Tingxue,WANG Yongli,DING Yunhong. Expert system for economic optimization of hydraulic fracturing design[J].Acta Petrolei Sinica,2004

    (1):66-69.
    [3]
    蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术,2011,39(3):36-40.

    JIANG Tingxue,JIA Changgui,WANG Haitao,et al. Study on network fracturing design method in shale gas[J].Petroleum Drilling Techniques,2011,39(3):36-40.
    [4]
    路保平. 中国石化页岩气工程技术进步及展望[J]. 石油钻探技术,2013,41(5):1-8.

    LU Baoping.Sinopec engineering technical advance and its developing tendency in shale gas[J].Petroleum Drilling Techniques,2013,41(5):1-8.
    [5]
    张映红,路保平. 世界能源趋势预测及能源技术革命特征分析[J]. 天然气工业,2015,35(10):1-10.

    ZHANG Yinghong,LU Baoping.Prediction of global energy trend and analysis on energy technology innovation characteristics[J].Natural Gas Industry,2015,35(10):1-10.
    [6]
    蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业,2017,37(1):90-96.

    JIANG Tingxue,BIAN Xiaobing,WANG Haitao. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry,2017,37(1):90-96.
    [7]
    黎黎. 水基压裂液的悬砂性能对比[J]. 内蒙古石油化工,2011,37(21):51-53.

    LI Li.Performance comparison of suspending proppant ability of water-based fracturing fluid[J].Inner Mongolia Petrochemical Industry,2011,37(21):51-53.
    [8]
    肖博,张士诚,郭天魁,等. 页岩气藏清水压裂悬砂效果提升实验[J]. 东北石油大学学报,2013,37(3):94-99.

    XIAO Bo,ZHANG Shi cheng,GUO Ti ankui. Laboratory experiment on the method for improving proppant-carrying capacity of slickwater fracturing in shale gas reservoirs[J].Journal of Northeast Petroleum Univercity,2013,37(3):94-99.
    [9]
    温庆志,李杨,徐希,等. 水力压裂单缝中常用压裂液携砂性能评价[J]. 油气地质与采收率,2015,22(4):123-126.

    WEN Qingzhi,LI Yang,XU Xi,et al.Evaluation on sand carrying capacity of commonly used fracturing fluid in the single fracture by hydraulic fracturing[J].Petroleum Geology and Recovery Efficiency,2015,22(4):123-126.
    [10]
    高阳. 纤维压裂液流变及脉冲携砂性能研究[D]. 成都:西南石油大学,2016. GAO Yang.Study on rheological and pulsed sand carrying properties of fiber fracturing fluid[D].Chengdu:Southwest Petroleum University,2016.
    [11]
    马健. 通道压裂中纤维辅助携砂机理研究[D]. 成都:西南石油大学,2017. MA Jian.Fiber-assisted proppant-carrying mechanism in channel fracturing[D].Chengdu:Southwest Petroleum University,2017.
    [12]
    杜涛,姚奕明,蒋廷学,等. 可逆交联聚合物压裂液流变及悬砂性能研究[J]. 应用化工,2015,44(10):1788-1790.

    DU Tao,YAO Yiming,JIANG Tingxue.Study of rheological property and proppant-carrying capacity for reversible cross-linking polymer fracturing fluid[J]. Application of Chemical Industry,2015,44(10):1788-1790.
    [13]
    王卫平,顾培韵,宋尧本,等. 聚合物悬浮体系的流变特性[J]. 浙江大学学报(自然科学版),1989,23(6):21-29. WANG Weiping,GU Peiyun,SONG Yaoben,et al. Rheological properties of polymer suspension system[J]. Journal of Zhejiang University,1989,23(6):21-29.
    [14]
    ELGADDAFI R, AHMED R, GROWCOCK F.Settling behavior of particles in fiber-containing herschel bulkley fluid[J].Powder Technology,2016,301:782-793.
    [15]
    HUANG C,SUN X,WU J.Numerical simulation of inpipe particle transportation in CO2 foam[J].Interpretation, 2017,5(2):243-249.
    [16]
    SONG J, FAN W, LONG X,et al.Rheological behaviors of fluorinated hydrophobically associating cationic guar gum fracturing gel[J].Journal of Petroleum Science & Engineering,2016,146:999-1005.
    [17]
    CHENG D C. Viscosity-concentration equations and flow curves for suspensions[J].Chemistry and Industry,1980, 17:403-406.
    [18]
    PICCHI D,POESIO P, ULLMANN A,et al. Characteristics of stratified flows of Newtonian/non-Newtonian shear-thinning fluids[J]. International Journal of Multiphase Flow,2017,97(6):109-133.
    [19]
    FERREIRA J,OLHERO S M. Influence of particle size distribution on rheology and particle packing of silicabased suspensions[J].Powder Technology,2003,139:69-75.
    [20]
    李杨. 体积压裂复杂缝网支撑剂沉降规律研究[D]. 山东青岛:中国石油大学(华东),2015. LI Yang.Study on proppants settlement law in fracture network of volume fracturing[D].Shandong Qingdao:China University of Petroleum,2015.
    [21]
    LAPASIN R, ZUPANCIC A.Rheology of calcium carbonate suspensions in welan and rhamsan aqueous matrices[C].Southern Europe Conference on Rheology. Sangineto,1999,4:99-102.
    [22]
    王卫平,顾培韵. 悬浮液的流变特性及其影响因素和计算[J]. 高分子材料科学与工程,1989,5(1):1-10.

    WANG Weiping,GU Peiyun.Rheological properties of suspension and its influencing factors and calculation[J]. Polymeric Materials Science and Engineering,1989,5(1):1-10.
    [23]
    QUEMADA D.Rheology of concentrated disperse systems Ⅱ. A model for non-newtonian shear viscosity in steady flows[J].Rheologica Acta,1978,17(6):632-642.
    [24]
    KAWATRA S K,EISELE T C.Rheological effects in grinding circuits[J].International Journal of Mineral Processing,1988,22(1-4):251-259.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (682) PDF downloads(212) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return