Volume 35 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
CHEN Shuya, SONG Jiwei, SHI Yanping, PENG Yangdong, CAI Jihua. Drilling Fluid Technology for Stabilizing Borehole in Coproduction of “Three Gases” in Coal Measures[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 39-45. doi: 10.3969/j.issn.1001-5620.2018.04.007
Citation: CHEN Shuya, SONG Jiwei, SHI Yanping, PENG Yangdong, CAI Jihua. Drilling Fluid Technology for Stabilizing Borehole in Coproduction of “Three Gases” in Coal Measures[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 39-45. doi: 10.3969/j.issn.1001-5620.2018.04.007

Drilling Fluid Technology for Stabilizing Borehole in Coproduction of “Three Gases” in Coal Measures

doi: 10.3969/j.issn.1001-5620.2018.04.007
  • Received Date: 2018-02-05
  • Publish Date: 2018-07-30
  • Coproduction of "three gases" in coal measures requires drilling fluid to have the ability to maintain the stability of coal beds, dense sandstones and shales penetrated by the well. The patterns in which positively charged additives affect the Zeta potential of the surface of coal are studied based on the analyses made to the mineral composition of coal and shales. Laboratory experiments have been done to find a compounded surfactants that are able to effectively enlarge the contact angle of shale/coal, and to reduce the surface tension of the drilling fluid. Comprehensive evaluation was done to the properties of the drilling fluid, such as rheology, filtration, electrical property, wetting property, inhibitive capacity, reservoir protection and contamination resistance performance etc. Evaluation of these properties showed that positively charged organic gel and cationic surfactants effectively neutralize the electronegativity of the coal in Longtan formation in Bijie County. Quaternary ammonium salt surfactants and organosilicon surfactants all are able to change the Longmaxi shale and Longtan coal from water wetting to oil wetting. The optimized mixture of surfactants and mixed metal hydroxide (MMH-1) solution are able to effectively retard pore pressure transmission in shales and in coal. An MMH-drilling fluid with moderate viscosity and API filter loss of only 7 mL showed strong ability to inhibit the hydration of coal and shales. This MMH-1 drilling fluid also showed very weak damage to reservoir permeability; permeability impairment caused by the drilling fluid was only 10%. Gas permeability reduction by base mud can be reduced by 3.6% using the MMH-1 drilling fluid. MMH-1 drilling fluid is resistant to contamination; in laboratory experiment the MMH-1 drilling fluid was able to resist contamination by 3% NaCl, 1% CaCl2 and 5% attapulgite (to simulate drilled cuttings). MMH-1 drilling fluid is of low bio-toxicity and is environmentally friendly. All these advantages enable the MMH-1 drilling fluid to satisfy the needs for borehole stabilization in "three gases" coproduction from coal measures.

     

  • loading
  • [1]
    秦勇, 申建, 沈玉林. 叠置含气系统共采兼容性——煤系"三气"及深部煤层气开采中的共性地质问题[J]. 煤炭学报, 2016,41(1):14-23.

    QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14-23.
    [2]
    梁冰, 石迎爽,孙维吉,等. 中国煤系"三气"成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167-173.

    LIANG Bing,SHI Yingshuang,SUN Weiji,et al. Reservoir forming characteristics of "the three gases" in coal measure and the possibility of commingling in China[J].Journal of China Coal Society,2016,41(1):167-173.
    [3]
    胡进奎, 杜文凤. 浅析煤系地层"三气合采"可行性[J]. 地质论评, 2017,63(S1):83-84.

    HU Jinkui,DU Wenfeng. Analysis on feasibility of three gas co-exploration in coal measure strata[J]. Geological Review,2017,63(S1):83-84.
    [4]
    张茜,孙卫,任大忠,等. 化学驱表面活性剂对特低渗透砂岩储层表面荷电性能的影响:以鄂尔多斯盆地陇东地区上三叠统延长组长8储层为例[J]. 地质科技情报,2016,35(6):235-242.

    ZHANG Qian, SUN Wei, REN Dazhong,et al. Effects of surfactant on the electrical property of Ultralow permeability sandstone reservoir:the upper triassic chant 8 formation in Longdong area of ordos basin as an example[J]. Geological Science and Technology Information, 2016,35(6):235-242.
    [5]
    ADIBHATL A B, MOHANTY K. Oil recovery from fractured carbonates by surfactant-aided gravity drainage:laboratory experiments and mechanistic simulations[J]. SPE Reservoir Evaluation & Engineering, 2008,11(1):119-130.
    [6]
    HIRASAKI G, ZHANG D L. Surface chemistry of oil recovery from fractured, oil-wet, carbonate formation[J]. SPE Journal, 2004, 9(2):151-162.
    [7]
    王富华, 艾军, 王辉,等. 无机正电胶双聚钻井完井液技术研究[J]. 石油钻探技术, 2005,33(1):24-27.

    WANG Fuhua, AI Jun, WANG Hui, et al. Study on inorganic positive gel/polyol/polymer drilling and completion fluid[J]. Petroleum Drilling Techniques, 2005,33(1):24-27.
    [8]
    梁利喜, 熊健, 刘向君. 水化作用和润湿性对页岩地层裂纹扩展的影响[J]. 石油实验地质,2014,36(6):780-786.

    LIANG Lixi, XIONG Jian, LIU Xiangjun. Effects of hydration swelling and wettability on propagation mechanism of shale formation crack[J]. Petroleum Geology & Experiment,2014,36(6):780-786.
    [9]
    Alvarez J O, Schechter D. 非常规油气开发中润湿性反转技术的应用[J]. 石油勘探与开发, 2016,43(5):1-8. ALVAREZ J O, SCHECHTER D.Application of wettability alteration in the exploitation of unconventional liquid resources[J].Petroleum Exploration and Development,2016,43(5):1-8.
    [10]
    蔡记华, 岳也, 曹伟建, 等. 钻井液润湿性影响页岩井壁稳定性的实验研究[J]. 煤炭学报,2016,41(1):228-233.

    CAI Jihua, YUE Ye, CAO Weijian, et al. Experimental study on the effect of drilling fluid wettability on shale wellbore stability[J].Journal of China Coal Society, 2016,41(1):228-233.
    [11]
    高春宁, 邱平, 武平仓, 等. 表面活性剂对油藏砂岩表面性质的影响[J]. 武汉大学学报(理学版),2011,57(1):43-46. GAO Chunning,QIU Ping,WU Pingcang, et al. Effect of surfactant on surface properties of reservoir sandstone[J]. Journal of Wuhan University (Natural Science Edition),2011,57(1):43-46.
    [12]
    李相臣,康毅力,尹中山. 不同化学环境下煤岩表面电性与润湿性特征[J]. 中国矿业大学学报, 2014,43(5):864-869.

    LI Xiangchen,KANG Yili,YIN Zhongshan. Surface electricity and wettability of coal rock under the condition of different chemical environments[J]. Journal of China University of Mining & Technology,2014,43(5):864-869.
    [13]
    王宝俊, 李敏, 赵清艳, 等. 煤的表面电位与表面官能团间的关系[J]. 化工学报, 2004,55(8):1329-1334.

    WANG Baojun, LI Min, ZHAO Qingyan, et al. Relationship between surface potential and functional groups of coals[J]. Journal of Chemical Industry and Engineering, 2004,55(8):1329-1334.
    [14]
    宋永玮, 李新生, 吴家珊. 粉煤表面的动电位[J]. 燃料化学学报, 1988,16(3):245-252.

    SONG Yongwei, LI Xinsheng,WU Jiashan. Zeta potential of the surface of fine coal[J]. Journal of Fuel Chemistry and Technology,1988,16(3):245-252.
    [15]
    张春光, 侯万国, 孙德军. 电性抑制性井壁稳定与油层保护[J]. 钻井液与完井液,2002,19(6):5-8.

    ZHANG Chunguang,HOU Wanguo,SUN Dejun. Electrical behavior, inhibition, wall stability and reservoir protection[J]. Drilling Fluid & Completion Fluid,2002, 19(6):5-8.
    [16]
    刘开平,宫华,周敬恩.海泡石表面电性研究[J]. 矿产综合利用,2004(5):15-21. LIU Kaiping,GONG Hua,ZHOU Jing'en. Research on surface electrical property of sepiolite[J]. Multiple Utilization of Mineral Resources, 2004

    (5):15-21.
    [17]
    苏长明, 付继彤, 郭保雨. 黏土矿物及钻井液电动电位变化规律研究[J]. 钻井液与完井液,2002,19(6):1-4.

    SU Changming,FU Jitong, GUO Baoyu. Research on the changing tendency of zeta Potential of the clay minerals and drilling fluid[J]. Drilling Fluid & Completion Fluid,2002,19(6):1-4.
    [18]
    BIBAK K, KAPRON B M, SRINIVASAN V. MMH with arbitrary modulus is always almost universal[J]. Information Processing Letters,2016,116(7):481-483.
    [19]
    杨建,付永强,陈鸿飞,等.页岩储层的岩石力学特性[J]. 天然气工业,2012,32(7):12-14.

    YANG Jian, FU Yongqiang, CHEN Hongfei,et al. Rock mechanical characteristics of shale reservoirs[J]. Natural Gas Industry,2012,32(7):12-14.
    [20]
    韩辉,钟宁宁,焦淑静,等. 泥页岩孔隙的扫描电子显微镜观察[J]. 电子显微学报,2013,32(4):325-330.

    HAN Hui, ZHONG Ningning, JIAO Shujing, et al. Scanning electron microscope observation of pores in mudstone and shale[J]. Journal of Chinese Electron Microscopy Society,2013,32(4):325-330.
    [21]
    蒋平,张贵才,葛际江,等. 润湿反转机理的研究进展[J]. 西安石油大学学报(自然科学版),2007,22(6):78-84. JIANG Ping, ZHANG Guicai, GE Jijiang, et al. Progress in the research of wettability reversal mechanism[J]. Journal of Xi'an Shiyou University(Natural Science Edition),2007,22(6):78-84.
    [22]
    VAN OORT E,HALE A H,MODY F K,et al. Transport in shales and the design of improved waterbased shale drilling fluids[J]. SPE Drilling & Completion, 1996, 11(3):137-146.
    [23]
    黄雪静,崔茂荣,周长虹,等. 钻井液生物毒性评价方法对比[J]. 油气田环境保护,2006,16(4):25-27.

    HUANG Xuejing, CUI Maorong, ZHOU Changhong, et al. Comparison of biological toxicity assessment methods for drilling fluids[J]. Environmental Protection of Oil & Gas Fields,2006,16(4):25-27.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (658) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return