Volume 35 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
LIU Chenchao, WANG Xi, PING Liqiu, LI Rong, WANG Huanran, YANG Rui. Molecular Dynamics Simulation and Experimental Study on the Inhibition of Hydrate Formation with Glycerol Triacetate[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 14-19. doi: 10.3969/j.issn.1001-5620.2018.04.003
Citation: LIU Chenchao, WANG Xi, PING Liqiu, LI Rong, WANG Huanran, YANG Rui. Molecular Dynamics Simulation and Experimental Study on the Inhibition of Hydrate Formation with Glycerol Triacetate[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(4): 14-19. doi: 10.3969/j.issn.1001-5620.2018.04.003

Molecular Dynamics Simulation and Experimental Study on the Inhibition of Hydrate Formation with Glycerol Triacetate

doi: 10.3969/j.issn.1001-5620.2018.04.003
  • Received Date: 2018-04-14
  • Publish Date: 2018-07-30
  • High efficiency hydrate inhibitors are generally used in offshore deep water drilling to prevent the formation of hydrate which is able to plug pipelines and subsea blowout preventers (BOPs). In laboratory experiment, the decomposition of sI hydrate by glycerol triacetate and the synergy between glycerol triacetate and NaCl were studied at 4℃ and 20 MPa, using NPT ensemble molecular dynamics. The experimental results showed that the hydrogen bonds between glycerol triacetate and water destroyed the cage structure of the hydrate molecules. NaCl is able to reduce the activity of water, thereby destroying the equilibrium conditions under which the hydrate is stabilized. The decomposition of hydrate mainly takes place in the first 50 ps; the diffusion coefficient of the hydrate molecules under the co-action of glycerol triacetate is greater than the diffusion coefficient of the hydrate molecules under the action of glycerol triacetate alone. At 4℃ and 20 MPa, the reaction equilibrium pressure of 0.5% glycerol triacetate is 18.75 MPa, and that of 0.5% glycerol triacetate + 10% NaCl is 18.91 MPa, verifying the hydrate inhibitive capacity of glycerol triacetate and the synergy between glycerol triacetate and NaCl. The study findings can be used in developing new hydrate inhibitors for ultra-deep water drilling and in formulating hydrate inhibitors.

     

  • loading
  • [1]
    赵学战,方满宗,刘和兴,等. 南海深水水基钻完井液防水合物技术[J]. 探矿工程(岩土钻掘工程),2017, 44(2):6-10. ZHAO Xuezhan, FANG Manzong, LIU Hexing, et al. Deepwater water-based mud hydrate inhibition technology in south China sea[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2017, 44(2):6-10.
    [2]
    HEGE E, MAJEED Y, EIRIK S. Hydrate control during deepwater drilling:overview and new drilling fluids formulations[C]. SPE 38567, 1997.
    [3]
    SHAUGHNE S SY J M, ARMAGOS T W K, HERRMANN R P, et al. Problems of ultra-deepwater drilling[C]. SPE/IADC 52782, 1999.
    [4]
    丁斌,金朝辉,张春祥,等. H3PW12O40催化合成三乙酸甘油酯及产物精制[J]. 精细石油化工,2003(2):47-50. DING Bin, JIN Chaohui, ZHANG Chunxiang, et al. H3

    PW12O40 catalytic synthesis of glycerol triacetate and purification of its products[J]. Speciality Petrochemicals, 2003(2):47-50.
    [5]
    MARK T S, PAUL C T, JEANPIERRE M, et al. Kinetic inhibitor of hydrate crystallization[J]. Journal of the American Chemical Society, 2004, 126(5):1569-1576.
    [6]
    包玲. 酰胺类水合物动力学抑制剂分子模拟研究[D], 广州:华南理工大学,2014. BAO Ling. Molecular simulation study on kinetic hydrate inhibitors containing amide group[D], Guangzhou:South China University of Technology, 2014.
    [7]
    王乐,蒋官澄,林鑫. 卵磷脂对s Ⅰ型甲烷水合物晶体分解的抑制作用分子动力学模拟[J]. 中国海上油气, 2017,29(5):107-113.

    WANG Le, JIANG Guancheng, LIN Xin. Study on the molecular dynamics of the inhibitory action of lecithin against s Ⅰ gas hydrate decomposition[J]. China Offshore Oil and Gas, 2017,29(5):107-113.
    [8]
    赵欣,邱正松,黄维安,等. 天然气水合物热力学抑制剂作用机制及优化设计[J]. 石油学报, 2015,36(6):760-766.

    ZHAO Xin, QIU Zhengsong, HUANG Weian, et al. Inhibition mechanism and optimized design of thermodynamic gas hydrate inhibitors[J]. Petroleum Journal, 2015, 36(6):760-766.
    [9]
    KIRCHNER M T, BOESE R,BILLUPS W E, et al. Gas hydrate single-crystal structure analyses[J]. Journal of the American Chemical Society, 2004, 126(30):9407-9412.
    [10]
    陈光进,孙长宁,马庆兰. 气体水合物科学与技术[M]. 北京:化学工业出版社,2008:18-19. CHEN Guangjin, SUN Changning, MA Qinglan. Gas hydrate science and technology[M].Beijing:Chemical Industry Press, 2008:18

    -19.
    [11]
    颜克凤,李小森,陈朝阳,等. 用分子动力学模拟甲烷水合物热激法分解[J]. 物理学报,2007,56(8):4994-5001.

    YAN Kefeng, LI Xiaosen, CHEN Chaoyang. et al. Molecular dynamics simulation of methane hydrate dissociation by thermal stimulation[J]. Journal of Physics, 2007, 56(8):4994-5001.
    [12]
    MENTEN P D,PARRISH W R, SLOAN E D. Effect of inhibitors on hydrate formation[J]. Industrial & Engineering Chemistry Process Design and Development, 1981,20(2):399-401.
    [13]
    陈玉娟,王燕鸿,樊栓狮,等. 不同浓度聚乙烯醇对甲烷水合物分解作用的分子动力学模拟[J]. 化学学报, 2010,68(22):2253-2258.

    CHEN Yujuan, WANG Yanhong, FAN Shuanshi, et al. Molecular dynamic simulation of methane hydrate decomposition with polyvinyl alcohol at different concentrations[J]. Acta Chimica Sinica, 2010, 68(22):2253-2258.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (444) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return