LIANG Wenli. Enhancing Pressure Bearing Capacity of Formation to Control Mud Losses in Deep Shale Gas Drilling With Oil Base Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(3): 37-41. doi: 10.3969/j.issn.1001-5620.2018.03.006
Citation: LIANG Wenli. Enhancing Pressure Bearing Capacity of Formation to Control Mud Losses in Deep Shale Gas Drilling With Oil Base Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(3): 37-41. doi: 10.3969/j.issn.1001-5620.2018.03.006

Enhancing Pressure Bearing Capacity of Formation to Control Mud Losses in Deep Shale Gas Drilling With Oil Base Drilling Fluids

doi: 10.3969/j.issn.1001-5620.2018.03.006
  • Received Date: 2018-01-22
  • Publish Date: 2018-05-30
  • With the advancement of shale gas drilling to deeper reservoirs, the density of drilling fluid has approached 1.75 g/cm3, and the density of cement slurry approached 1.85-1.89 g/cm3. To improve the quality of well cementing and prevent the losses of cement slurry, the pressure bearing capacity of the open hole to oil base drilling fluids should be improved. The application of an imported new lost circulation material (LCM) for use in oil base mud on the deep shale gas well Jiaoye-XX (a well drilled in the second phase of shale gas development in Fuling, Sichuan) showed that the oil base mud LCM is able to plug lost circulation zones while drilling, and imposes no negative effect on the rheology of the drilling fluid. The pressure bearing capacity of part of the lost circulation zones was enhanced, from pressure bearing capacity of 1.75 g/cm3 to 1.80 g/cm3. Finally, all the lost circulation zones had their pressure bearing capacity enhanced. Using the imported LCM and an oil base mud LCM T150 of independent intellectual property rights, the pressure bearing capacity of the formations prone to lost circulation was enhanced to 1.85 g/cm3. Study results showed that control of oil base mud losses with the two strongly LCMs is widely applicable and easy to operate. The two strongly lipophilic LCMs are a worth popularizing in controlling oil base mud losses.

     

  • [1]
    舒曼,赵明琨,许明标. 涪陵页岩气田油基钻井液随钻堵漏技术[J]. 石油钻探技术,2017,45(3):21-26.

    SHU Man,ZHAO Mingkun,XU Mingbiao. Plugging while drilling technology using oil-based drilling fluid in Fuling shale gas field[J]. Petroleum Drilling Techniques, 2017,45(3):21-26.
    [2]
    朱怀江,王平美,刘强,等.一种适用于高温高盐油藏的柔性堵剂[J]. 石油勘探与开发,2007,34(2):230-233.

    ZHU Huaijiang, WANG Pingmei,LIU Qiang,et al. A kind of flexible water shutoff agent applicable to reservoirs with high temperature and salinity[J].Petroleum Exploration & Development,2007,34(2):230-233.
    [3]
    聂勋勇,王平全,张新民. 聚合物凝胶堵漏技术研究进展[J]. 钻井液与完井液,2007,24(1):82-84.

    NIE Xunyong, WANG Pingquan,ZHANG Xinmin. Progresses in gelling polymer sealing technology research[J].Drilling Fluid & Completion Fluid,2007, 24(1):82-84.
    [4]
    张新民,聂勋勇,王平全,等. 特种凝胶在钻井堵漏中的应用[J]. 钻井液与完井液,2007,24(5):83-84.

    ZHANG Xinmin, NIE Xunyong, WANG Pingquan,et al. A special gel for mud loss control[J].Drilling Fluid & Completion Fluid,2007,24(5):83-84.
    [5]
    李家学,黄进军,罗平亚,等.随钻防漏堵漏技术研究[J]. 钻井液与完井液,2008,25(3):25-26.

    LI Jiaxue,HUANG Jinjun,LUO Pingya,et al. Researches on mud losses prevention and control[J]. Drilling Fluid & Completion Fluid,2008,25(3):25-26.
  • Relative Articles

    [1]ZHOU Zhongya. Use Oil Based Drilling Fluid to Stabilize Borehole Wall and Prevent and Control Mud Losses in Fuxing Area[J]. DRILLING FLUID & COMPLETION FLUID, 2024, 41(3): 305-317. doi: 10.12358/j.issn.1001-5620.2024.03.004
    [2]TU Siqi, XIE Feiyan, AO Kangwei, ZHANG Tianyi, ZHEN Keli. A High Efficiency Oil Wash Spacer for Shale Gas Wells in Changning Oilfield[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(1): 82-86. doi: 10.12358/j.issn.1001-5620.2022.01.014
    [3]YU Huamin, XUE Li, WU Hongling, LI Haibiao, FENG Dan, YANG Jiping, LU Na. Drilling Fluid with Superior Plugging Performance Used in Deep Well Drilling in Manshen Block[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 171-179. doi: 10.12358/j.issn.1001-5620.2022.02.007
    [4]LIU Wei, MAO Lijun, OUYANG Wei. Research on Plugging Technology of Shale Gas Oil-Based Crosslinking Solidification[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(2): 207-211. doi: 10.3969/j.issn.1001-5620.2021.02.013
    [5]ZUO Jingjie, ZHANG Zhenhua, YAO Rugang, PENG Yuntao, WANG Gang, NAN Xu. Technical Difficulties and Case Study of Oil Base Drilling Fluid Operation in Shale Gas Drilling in South Sichuan[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 294-300. doi: 10.3969/j.issn.1001-5620.2020.03.005
    [6]WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and Application of a High Density Oil Base Drilling Fluid with High Temperature Resistance of 220℃[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(5): 550-554,560. doi: 10.3969/j.issn.1001-5620.2020.05.002
    [7]GU Sui, WEI Zhaohui, HE Yichao, SHI Yanping, WU Xiaoming, CAI Jihua. Experimental Study on Water-based Drilling Fluid for Horizontal Drilling of the Shuijingtuo Shale Formation in West Hubei[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(1): 46-53. doi: 10.3969/j.issn.1001-5620.2020.01.007
    [8]ZHANG Gaobo, GAO Qinlong, MA Qianyun. Discussion on the Enhancement of the Inhibitive Capacity of Oil Base Drilling Fluids in Shale Gas Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(2): 141-147. doi: 10.3969/j.issn.1001-5620.2019.02.002
    [9]YANG Wenquan, ZHANG Yu, CHENG Zhi, LUO Renwen, HE Yongbo, WANG Dongming, XIAO Fei, XUE Li. Application of an Ultra-high Temperature Drilling Fluid in Deep Well Drilling in Yangshuiwu Buried Hill[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 298-302,307. doi: 10.3969/j.issn.1001-5620.2019.03.006
    [10]ZHU Baozhong. Drilling Fluid Technology for Long Horizontal Shale Gas Well JY2-5HF in China[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(6): 60-64. doi: 10.3969/j.issn.1001-5620.2018.06.011
    [11]TANG Guowang, YU Peizhi. Mud Loss Control while Drilling with Oil Base Drilling Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(4): 32-37. doi: 10.3969/j.issn.1001-5620.2017.04.006
    [12]XIE Jun, SI Xiqiang, LEI Zumeng, LI Hongxing, JIA Baoxu. Research and Application of OBM-like Water Base Drilling Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(4): 26-31. doi: 10.3969/j.issn.1001-5620.2017.04.005
    [13]LIU Jingping, SUN Jinsheng. Water Base Drilling Fluid Technology for Horizontal Shale Gas Drilling in Sichuan and Yunnan[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(2): 9-14. doi: 10.3969/j.issn.1001-5620.2017.02.002
    [14]WANG Pingquan, JING Yujuan, PENG Zhen, BAI Yang, XIE Junni. New Method for Evaluating Filtration and Mud Cake Building Performance of Drilling Fluid for Shale Drilling[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(2): 51-56. doi: 10.3969/j.issn.1001-5620.2017.02.009
    [15]LI Hongmei, SHEN Feng, WU Jinqiao, LI Wei, MA Zhenfeng. Study on Performance of A New Oil Base Mud Lost Circulation Material[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(2): 41-44. doi: 10.3969/j.issn.1001-5620.2016.02.009
    [16]WANG Can, SUN Xiaojie, QIU Zhengsong, LIU Junyi, HUANG Daquan, ZHANG Xianbin, Pu Dan. Experimental Study on Oil Base Mud Loss Control with Gel LCM[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 40-44. doi: 10.3969/j.issn.1001-5620.2016.06.007
    [17]LU Li, CHEN Ying, XU Tingting, ZHANG Xiaohu. Study and Application of Stimulation Fluid for Shale Reservoirs[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(2): 111-116. doi: 10.3969/j.issn.1001-5620.2016.02.024
    [18]LIU Jingping, SUN Jinsheng. Effects of Drilling Fluid Activity on Hydration and Dispersion of Formation Rocks in Shale Gas Drilling in Chuan-Dian Area[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(2): 31-35. doi: 10.3969/j.issn.1001-5620.2016.02.007
  • Cited by

    Periodical cited type(24)

    1. 王长豹,程云,马诚,杨超,钟飞升,杨国兴. 裂缝性地层油基钻井液用堵漏材料的研究进展. 当代化工. 2024(11): 2621-2627 .
    2. 邓正强,欧猛,许桂莉,黄坤,梁睿,黄平,罗宇峰,胡嘉. 页岩气窄密度窗口地层封堵承压油基钻井液技术. 石油化工应用. 2023(03): 53-57 .
    3. 侯卓识,郭涛,艾利国,周宇鹏,龙云飞. 大庆油田深层气开发钻完井关键技术应用与实践. 采油工程. 2023(01): 39-43+83-84 .
    4. 于雷,李公让,王宝田,张高峰,张守文,明玉广. 一种新型亲油纤维堵漏剂的研发. 天然气工业. 2023(06): 112-118 .
    5. 王均,罗陶涛,蒲克勇,陶操. 适于涪陵页岩气田储集层的油基钻井液承压堵漏材料. 材料导报. 2022(06): 124-128 .
    6. 王长勤,秦永峰,李强,廖青,牛燕龙. 页岩气油基钻井液承压堵漏技术研究. 山东化工. 2022(10): 78-79+82 .
    7. 郭明红,张克正,吕东华,来东风,王保军,徐文光,刘艳,李秀妹. 两段式桥堵增效技术在南堡27-平201井应用. 钻井液与完井液. 2022(02): 180-184 . 本站查看
    8. 陈军,王平,李占超. 油基钻井液防漏堵漏理论与技术研究进展. 当代化工研究. 2022(12): 162-164 .
    9. 贾利春,李枝林,张继川,陶怀志,李雷,黄崇君,魏萧. 川南海相深层页岩气水平井钻井关键技术与实践. 石油钻采工艺. 2022(02): 145-152 .
    10. 王建华,王玺,柳丙善,张顺元,闫丽丽,杨峥,王韧. 油基钻井液用改性树脂类抗高温防漏堵漏剂研究. 当代化工研究. 2021(03): 150-152 .
    11. 刘政,李茂森,蒋学光. 川渝页岩气井油膨胀随钻防漏治漏技术及应用. 天然气勘探与开发. 2021(01): 118-124 .
    12. 李公让,于雷,刘振东,李卉,明玉广. 弹性孔网材料的堵漏性能评价及现场应用. 石油钻探技术. 2021(02): 48-53 .
    13. 刘瑞,于培志. 油基钻井液随钻堵漏材料的研究与应用. 辽宁化工. 2021(06): 784-787+791 .
    14. 纪卫军,杨勇,闫永生,唐国旺. 一种油基钻井液用凝胶堵漏体系及其应用. 钻井液与完井液. 2021(02): 196-200 . 本站查看
    15. 陈亮,胡进科,耿冬,李子钰. 重庆页岩气井油基钻井液堵漏防塌新工艺探索. 油气藏评价与开发. 2021(04): 527-535 .
    16. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 .
    17. 尹建,刘菊,黎俊吾. 川南高温深层页岩气工程技术支撑管理模式及其应用. 天然气技术与经济. 2021(06): 26-29+49 .
    18. 邓虹,殷鸽,王狮军,王乾,崔金明,刘青松. 适用于深层页岩气储层的高效水基钻井液体系研究及应用. 钻采工艺. 2020(01): 90-93+12-13 .
    19. 聂天宇. 深层页岩气油基钻井液承压堵漏技术. 化工设计通讯. 2020(10): 195-196 .
    20. 左京杰,张振华,姚如钢,彭云涛,王刚,南旭. 川南页岩气地层油基钻井液技术难题及案例分析. 钻井液与完井液. 2020(03): 294-300 . 本站查看
    21. 刘政,李俊材,黄鸿. 准噶尔南缘油基膨胀型随钻防漏堵漏技术. 新疆石油天然气. 2020(02): 43-47+3 .
    22. 刘衍前. 涪陵页岩气田加密井钻井关键技术. 石油钻探技术. 2020(05): 21-26 .
    23. 郝海洋,屈勇,何吉标,张家瑞,刘俊君. 页岩气水平井低密度防窜水泥浆增稠机理. 天然气勘探与开发. 2020(04): 131-137 .
    24. 孙莉. 隆平1井钻井设计与施工. 探矿工程(岩土钻掘工程). 2019(06): 36-40 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.2 %FULLTEXT: 26.2 %META: 71.5 %META: 71.5 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.9 %其他: 1.9 %China: 0.3 %China: 0.3 %United States: 0.4 %United States: 0.4 %上海: 23.8 %上海: 23.8 %东营: 0.3 %东营: 0.3 %俄亥俄州: 0.5 %俄亥俄州: 0.5 %克拉玛依: 0.2 %克拉玛依: 0.2 %北京: 7.6 %北京: 7.6 %台州: 0.2 %台州: 0.2 %哈密: 0.2 %哈密: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大同: 0.2 %大同: 0.2 %宜宾: 0.3 %宜宾: 0.3 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.1 %延安: 0.1 %张家口: 1.5 %张家口: 1.5 %意法半: 0.1 %意法半: 0.1 %成都: 0.9 %成都: 0.9 %晋城: 0.2 %晋城: 0.2 %武汉: 0.2 %武汉: 0.2 %泸州: 0.1 %泸州: 0.1 %济南: 0.1 %济南: 0.1 %海东: 0.1 %海东: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.1 %湖州: 0.1 %濮阳: 0.2 %濮阳: 0.2 %盘锦: 0.1 %盘锦: 0.1 %自贡: 0.1 %自贡: 0.1 %芒廷维尤: 38.5 %芒廷维尤: 38.5 %芝加哥: 0.2 %芝加哥: 0.2 %衢州: 0.3 %衢州: 0.3 %西宁: 12.8 %西宁: 12.8 %许昌: 0.1 %许昌: 0.1 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.3 %达州: 0.3 %运城: 0.2 %运城: 0.2 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.1 %铁岭: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %青岛: 0.2 %青岛: 0.2 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %驻马店: 6.6 %驻马店: 6.6 %其他ChinaUnited States上海东营俄亥俄州克拉玛依北京台州哈密哥伦布大同宜宾宣城巴音郭楞库比蒂诺延安张家口意法半成都晋城武汉泸州济南海东深圳湖州濮阳盘锦自贡芒廷维尤芝加哥衢州西宁许昌贵阳达州运城鄂州重庆铁岭长沙长治青岛香港特别行政区驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (948) PDF downloads(225) Cited by(28)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return