Volume 35 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
DENG Mingyi, LIU Yangyang, XIE Gang, ZHAO Yang. A Thermoanalytic Quantitative Method for Studying the Bound Water of Sodium Montmorillonite[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(2): 17-22. doi: 10.3969/j.issn.1001-5620.2018.02.002
Citation: DENG Mingyi, LIU Yangyang, XIE Gang, ZHAO Yang. A Thermoanalytic Quantitative Method for Studying the Bound Water of Sodium Montmorillonite[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(2): 17-22. doi: 10.3969/j.issn.1001-5620.2018.02.002

A Thermoanalytic Quantitative Method for Studying the Bound Water of Sodium Montmorillonite

doi: 10.3969/j.issn.1001-5620.2018.02.002
  • Received Date: 2017-12-30
  • Publish Date: 2018-03-30
  • In hydration process, water molecules adsorbed by clay particles in different hydration stages have different structures and properties. The adsorbed water includes free water and bound water, which have different ways of being attached onto clay particles. Researchers both at home and abroad have paid more attention to qualitative analysis of the type and amount of the bound water, the quantitative analysis of bound water and research on the effects of the type and amount of bound water on rock mechanics, on the other hand, provides a quantitative correction method for the establishment of force-chemistry coupling model. Assume that the sodium montmorillonite particles are in a shape of hexahedron, a power function model describing the relationship between the amount of bound water and the total adsorbed water of sodium montmorillonite can be established taking into account the micro characteristics of water adsorption. The type and amount of water adsorbed by sodium montmorillonite can be measured with thermogravimetry, airdrying of clay, adsorption in room temperature and isotherm adsorption. The experimental data are then fitted with data from model calculation. The results show that the product of the relative errors and the geometric mean of relative errors of the established model are both approximately equal to 1, indicating that the established model has good precision of prediction.

     

  • loading
  • [1]
    FAM M A,DUSSEAULT M B,FOOKS J C. Drilling in mudrocks:rock behavior issues[J]. Journal of Petroleum Science & Engineering,2003,38(3-4):155-166.
    [2]
    申瑞臣,屈平,杨恒林. 煤层井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术. 2010, 38(3):1-7.

    SHENG Ruichen,QU Ping,YANG Henglin. Research progress and trend of development of coal wall stability technology[J]. Petroleum Drilling Techniques,2010,38(3):1-7.
    [3]
    杨决算,侯杰. 泥页岩微裂缝模拟新方法及封堵评价实验[J]. 钻井液与完井液, 2017, 34(1):45-49.

    YANG Juesuan,HOU Jie.A new method of simulating micro fractures in shale and plugging evaluation experiment[J]. Drilling Fluid&Completion Fluid,2017, 34(1):45-49.
    [4]
    ILGEN A G,HEATH J E,AKKUTLU I Y, et al. Shales at all scales:Exploring coupled processes in mud rocks[J]. Earth-Science Reviews,2017.
    [5]
    AL-ARFAJ M K,AMANULLAH M,SULTAN A S,et al. Chemical and mechanical aspects of wellbore stability in shale formations:a literature review[C]//Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers,2014.
    [6]
    YEW C H,CHENEVERT M E,WANG C L,et al. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling engineering,1990,5(04):311-316.
    [7]
    黄荣樽, 陈勉. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液, 1995, 12(3):15-21.

    HUANG Rongzun,CHEN Mian. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid&Completion Fluid,1995,12(3):15-21.
    [8]
    王倩,王刚,蒋宏伟,等. 泥页岩井壁稳定耦合研究[J]. 断块油气田. 2012, 19(4):517-521.

    WANG Qian,WANG Gang,JIANG Hongwei,et al. Study on shale wellbore stability coupling[J].Fault-Block Oil&Gas Field,2012, 19(4):517-521.
    [9]
    商翔宇,郑秀忠,周国庆. 高压下饱和黏土B系数研究[J]. 岩土工程学报. 2015,37(3):532-536.

    SHANG Xiangyu,ZHENG Xiuzhong,ZHOU Guoqing. Coefficient B of saturated clay under high pressure[J]. Chinese Journal of Geotechnical Engineering,2015,37(3):532-536.
    [10]
    谢刚,邓明毅,张龙. 黏土结合水的热分析定量研究方法[J]. 钻井液与完井液, 2013,30(6):1-4.

    XIE Gang,DENG Mingyi,ZHANG Long. Quantitative analysis on clay bound water of the thermal[J]. Drilling Fluid & Completion Fluid,2013,30(6):1-4.
    [11]
    张仁锋. 泥页岩井壁稳定性耦合研究[J]. 中国科技博览. 2014(6):509. ZHANG Renfeng. Research on the borehole wall stability coupling of the shale[J]. China science and technology review, 2014(6

    ):509.
    [12]
    尹志阳,房志国. 泥页岩地层井壁稳定技术研究[J]. 内江科技, 2015,36(6):44-45.

    YIN Zhiyang,FANG Zhiguo. Research on borehole wall stability technology of mud shale[J]. Neijiang technology, 2015,36(6):44-45.
    [13]
    梁大川. 泥页岩水化机理研究现状[J]. 钻井液与完井液,1997,14(6):29-31.

    LIANG Dachuan. Research status on hydration mechanism of mud shale[J].Drilling Fluid & Completion Fluid,1997,14(6):29-31.
    [14]
    李海旭. 硬脆性泥岩水化及其对井壁稳定性的影响研究[Z]. 西南石油大学,2013. LI Haixu. Study on hard brittle shale hydration and its influence on borehole wall stability[Z]. Southwest Petroleum University,2013.
    [15]
    米切尔JK岩土工程土性分析原理[M]. 南京工学院出版社,1988. MITCHEL K J. Geotechnical engineering in vestigated analysis principle[M]. Nanjing institute of technology press,1988.
    [16]
    MARTIN R T. Adsorbed water on clay:a review[J]. Clays & Clay Minerals,1960,9(1):28-70.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (516) PDF downloads(224) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return