LIU Shuang, ZHANG Hong, QIU Xiaohui, FANG Bo, LU Yongjun, ZHAI Wen. Temperature Resistance and Shear Resistance of Xanthan Gum and Its Derivatives[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(1): 119-123. doi: 10.3969/j.issn.1001-5620.2018.01.023
Citation: LIU Shuang, ZHANG Hong, QIU Xiaohui, FANG Bo, LU Yongjun, ZHAI Wen. Temperature Resistance and Shear Resistance of Xanthan Gum and Its Derivatives[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(1): 119-123. doi: 10.3969/j.issn.1001-5620.2018.01.023

Temperature Resistance and Shear Resistance of Xanthan Gum and Its Derivatives

doi: 10.3969/j.issn.1001-5620.2018.01.023
  • Received Date: 2017-09-11
  • Publish Date: 2018-01-30
  • Temperature resistance and shear resistance are important parameters of fracturing fluid and the one the key factors to the success of fracturing job. To widen the application of non-crosslinking xanthan gum fracturing fluids and improve their job performance, study has been conducted on the effects of chemical modification and molecular conformation of xanthan gum (XG) on the high temperature resistance and shear resistance of XG solution. It was found that at low temperatures, chemical modification can remarkably enhance the temperature resistance and shear resistance of XG. At high temperatures, chemical modification plays almost no role in enhancing the temperature resistance and shear resistance of XG. Chemical modification improves the networking structure of XG molecules and the viscoelasticity of XG solution. Addition of salts (ions) into XG solution accelerates the formation of double helix conformation of XG molecules. The combined action of chemical modification and salts on XG remarkably improves the temperature resistance, shear resistance and suspending capacity at elevated temperatures. Comparison of rheology before and after shearing at 180℃ indicated that salts can enhance the viscoelasticity, thixotropy and apparent viscosity of XG solution at elevated temperatures, improving its sand carrying capacity, and widening the application of non-crosslinking fracturing fluids formulated with XG and modified XG. It is concluded that combined action of chemical modification and salts greatly improves the rheology, temperature resistance and shear resistance of XG solution, thereby widening the application of non-crosslinking fracturing fluids formulated with XG, especially the XG fracturing fluids mixed with seawater.

     

  • [1]
    王永辉, 卢拥军, 李永平, 等. 非常规储层压裂改造技术进展及应用[J]. 石油学报, 2012, 33(S1):150-158.

    WANG Yonghui, LU Yongjun, LI Yongping, et al. Progress and application of hydraulic technology in unconventional reservoir[J]. Acta Petrolei Sinica, 2012, 33(S1):150-158.
    [2]
    WANG P ING, J IANG RUIZHONG, WANG SHICHAO, et al. Lessons learned from north America and current status of unconventional gas exploration and exploitation in China[Z]. SPE 153071, 2012.
    [3]
    AARTHY P, VIJAYAKUMAR J. Production, recovery and applications of xanthan gum by Xanthomonas campestris[J]. Journal of Food Engineering, 2011,106(1):1-12.
    [4]
    郭瑞, 丁恩勇. 黄原胶的结构、性能与应用[J]. 牙膏工业, 2006, 36(1):42-45.

    GUO Rui, DING Enyong. Structure performance and applications of xanthan gum[J]. China Surfactant Detergent and Cosmetics, 2006,36(1):42-45.
    [5]
    ZIRNSAK M, BOGER D, TIRTAATMADJA V. Steady shear and dynamic rheological properties of xanthan gum solutions in viscous solvents[J]. Journal of Rheology, 1999,43(3):627-650.
    [6]
    侯晓晖, 王煦, 王玉斌. 水基压裂液聚合物增稠剂的应用状况及展望[J]. 西南石油学院学报, 2004, 26(5):60-62.

    HOU Xiaohui, WANG Xu, WANG Yubin. Application and prospects of polymer thickener used in water-base fracturing fluids[J]. Journal of Southwest Petroleum Institute, 2004, 26(5):60-62.
    [7]
    黄彩贺, 卢拥军, 邱晓惠, 等. 支撑剂单颗粒沉降速率与线性胶压裂液黏弹性关系[J]. 钻井液与完井液, 2015, 32(6):72-77.

    HUANG Caihe, LU Yongjun, QIU Xiaohui, et al. Study on relationship between sedimentation rate of single proppant particle and viscoelasticity of linear colloid fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2015,32(6):72-77.
    [8]
    BARATI R, LIANG J T. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells[J]. Journal of Applied Polymer Science, 2014,131(16):318-323.
    [9]
    邬国栋,阿不都维力·阿不力米提,杨建强,等. 非交联植物胶XG-1压裂液技术[J]. 钻井液与完井液, 2015, 32(4):81-83.

    WU Guodong, Abuduweili·Abulimiti,YANG Jianqiang,et al. Non-crosslinking vegetable gum fracturing fluid XG-1 technology[J]. Drilling Fluid & Completion Fluid, 2015, 32(4):81-83.
    [10]
    VITTADINI E, DICHINSON L C, CHINACHOTI P. NMR water mobility in xanthan and locust bean gum mixtures:possible explanation of microbial response[J]. Carbohydrate Polymers, 2002, 49(3):261-269.
    [11]
    钱晓琳, 苏建政, 吴文辉, 等. 疏水改性黄原胶HMXGC8水溶液黏度特征[J]. 油田化学, 2007, 24(2):154-157.

    QIAN Xiaolin, SU Jianzheng, WU Wenhui, et al. Aqueous solution viscosity properties of hydrophobically modified xanthan gum HMXG-C8[J]. Oilfield Chemistry, 2007, 24(2):154-157.
    [12]
    赵志强,苗海龙,易勇. 分散型速溶黄原胶DIXG的制备与评价[J]. 钻井液与完井液, 2015, 32(2):26-28.

    Zhao Zhiqiang,MIAO Hailong, YI Yong. Preparation and evaluation of a dispersible instant xanthan gum[J]. Drilling Fluid & Completion Fluid, 2015, 32(2):26-28.
    [13]
    ADHIKARY P, SINGH R P. Synthesis, characterization, and flocculation characteristics of hydrolyzed and unhydrolyzed polyacylamide grafted xanthan gum[J]. Journal of Applied Polymer Science, 2004, 94(4):1411-1419.
    [14]
    RODD A B, DUNSTAN D E, BOGER D V, et al. Heterodyne and nonergodic approach to dynamic light scattering of polymer gels:aqueous xanthan in the presence of metal ions (Aluminum(Ⅲ))[J]. Macromolecules, 2001, 34(10):3339-3352.
  • Relative Articles

    [1]FU Junfang, ZHAO Zhiqiang, SUN Qiang, ZHAO Shengxu. A Preliminary Method for Identifying Xanthan Gum and Welan Gum[J]. DRILLING FLUID & COMPLETION FLUID, 2023, 40(5): 665-669. doi: 10.12358/j.issn.1001-5620.2023.05.017
    [2]LUO Ming, GAO Deli, HUANG Honglin, LI Jun, YANG Hongwei. Analyses of the Ballooning Effect and its Affecting Factors in Drilling Shallow Formations in Deep Water[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(6): 668-676. doi: 10.12358/j.issn.1001-5620.2022.06.002
    [3]NI Xiaoxiao, SHI He, CHENG Rongchao, ZHANG Jiaqi, WANG Jianhua. A Modified Hectorite Viscosifier and Gelling Agent for Oil Based Drilling Fluids[J]. DRILLING FLUID & COMPLETION FLUID, 2022, 39(2): 133-138. doi: 10.12358/j.issn.1001-5620.2022.02.001
    [4]ZHANG Xiayu, AI Zhengqing, WEN Zhiming, ZHANG Feng, XU Liqun, LIU Rui, ZHANG Xingguo. Research for low shear rheological properties of low return velocity cementing drilling fluid in Kuqa Piedmont[J]. DRILLING FLUID & COMPLETION FLUID, 2021, 38(4): 492-498. doi: 10.3969/j.issn.1001-5620.2021.04.015
    [5]TANG Luxin, FANG Bo, ZHANG Xiaoqi, WANG Yiqing. Research on Rheological Properties of Triethanolamine Modified Hydroxypropyl Guar Gum Solution[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(3): 389-393. doi: 10.3969/j.issn.1001-5620.2020.03.021
    [6]JANG Qihui, YANG Xiangtong, WANG Yonghong, LI Huili, Ning Kun. The Temperature-tolerance and Shear-resistance Mechanism of a Physical Gel Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2020, 37(4): 526-531. doi: 10.3969/j.issn.1001-5620.2020.04.020
    [7]WANG Lan, WU Qi, JIANG Guancheng. Modified Soybean Lecithin Used as Water Base Drilling Fluid Lubricant[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(1): 10-14. doi: 10.3969/j.issn.1001-5620.2019.01.002
    [8]TANG Zhichuan, QIU Zhengsong, ZHONG Hanyi, GUO Baoyu, WANG Xudong, ZHENG Yang. Synthesis and Evaluation of a New Chemical Borehole Wall Strengthener Made from Chitosan-Catechol[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(5): 534-541. doi: 10.3969/j.issn.1001-5620.2019.05.002
    [9]LAN Chengcheng, FANG Bo, LU Yongjun, QIU Xiaohui. Rheology of Triisopropanolamine Modified Xanthan Water Solution[J]. DRILLING FLUID & COMPLETION FLUID, 2019, 36(3): 371-377. doi: 10.3969/j.issn.1001-5620.2019.03.019
    [10]JIN Jianxia, TAN Rui, WANG Hongke, CHANG Qing, CAI Jingchao, MA Ruran, LI Yang, WANG Yue, ZHOU Yiqing. Application of a New Modified HPG in Ultra-high Temperature Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(2): 126-130. doi: 10.3969/j.issn.1001-5620.2018.02.021
    [11]LIU Tongyi, TANG Huang, CHEN Guangjie, DONG Guofeng, TANG Wenyue. Preparation and Evaluation of a Hydrophobic Cationic Guar Gum for Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2018, 35(1): 114-118. doi: 10.3969/j.issn.1001-5620.2018.01.022
    [12]LIU Shuang, ZHANG Hong, FANG Bo, LU Yongjun, QIU Xiaohui, ZHAI Wen. Carboxymethyl Hydroxypropyl Xanthan Gum and Its Rheological Properties[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(5): 106-110,116. doi: 10.3969/j.issn.1001-5620.2017.05.020
    [13]ZHU Yimei, FANG Bo, LU Yongjun, QIU Xiaohui. Study on the Rheology and Drag Reducing Performance of Epoxy Chloropropane Modifed Cellulose Solution[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 95-100. doi: 10.3969/j.issn.1001-5620.2016.06.017
    [14]MING Hua, ZHAI Wen, FAN Yongjie, JIANG Zhiqiang, LIU Wei. Preparation and Application of Modified Biopolymer Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(2): 117-121. doi: 10.3969/j.issn.1001-5620.2016.02.025
    [15]JI Sixue, YANG Jiang, LI Ran, QIN Wenlong, QIU Xiaohui. Effect of Chemicals on Gel Breaking of Associative Structure Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(1): 122-126. doi: 10.3969/j.issn.1001-5620.2016.01.025
    [16]JIANG Qihui, JIANG Guancheng, LU Yongjun, LIU Ping, QIU Xiaohui. A High Temperature Shear-resistant Association Supramolecular Polymer Weak Gel Fracturing Fluid[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 106-110. doi: 10.3969/j.issn.1001-5620.2016.06.019
    [17]SHAN Jie, ZHANG Xiwen, YANG Chao, YIN Zequn, LU Jiao. Synthesis and Evaluation of a Highly Calcium Resistant and Strongly Inhibitive Modified Starch[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(2): 19-22. doi: 10.3969/j.issn.1001-5620.2015.02.005
    [18]ZHAO Zhiqiang, MIAO Hailong, YI Yong. Preparation and Evaluation of a Dispersible Instant Xanthan Gum[J]. DRILLING FLUID & COMPLETION FLUID, 2015, 32(2): 26-28. doi: 10.3969/j.issn.1001-5620.2015.02.007
  • Cited by

    Periodical cited type(7)

    1. 周俊平,潘琪露,黄良刚,詹侃,汤恒,金利群,郑裕国. 生物制造技术在聚合物驱油应用中的研究进展. 生物工程学报. 2025(01): 148-172 .
    2. 毛仁杰,徐迅,张丽阳,喻德峰,黄飞,朱涤飞. 一种黄原胶增稠的快干洁厕液的研制. 中国洗涤用品工业. 2021(11): 43-48 .
    3. 徐启,周晓峰. 受压状态下水力压裂支撑剂性能评价方法. 大庆石油地质与开发. 2020(05): 51-57 .
    4. 赵素丽. 以季戊四醇为支化剂合成低黏度高切力钻井液提切剂. 钻井液与完井液. 2020(03): 282-287 . 本站查看
    5. 蓝程程,方波,卢拥军,邱晓惠. 三异丙醇胺改性黄原胶溶液流变特性. 钻井液与完井液. 2019(03): 371-377 . 本站查看
    6. 周洪涛,罗海,吕奉章,安继彬,霍彤,马永伟. 适用于苛刻油藏聚合物驱的新型微生物多糖性能. 石油钻采工艺. 2019(03): 393-398 .
    7. 蓝程程,方波,卢拥军,邱晓惠,翟文,王丽伟. 油酸酰胺丙基二甲基叔胺改性黄原胶溶液的流变特性. 油田化学. 2018(04): 627-633 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.1 %FULLTEXT: 21.1 %META: 74.7 %META: 74.7 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.9 %其他: 4.9 %其他: 0.9 %其他: 0.9 %China: 0.8 %China: 0.8 %Indonesia: 0.6 %Indonesia: 0.6 %Iran (ISLAMIC Republic Of): 0.7 %Iran (ISLAMIC Republic Of): 0.7 %Korea Republic of: 0.3 %Korea Republic of: 0.3 %[]: 0.4 %[]: 0.4 %上海: 29.3 %上海: 29.3 %东莞: 0.6 %东莞: 0.6 %东营: 0.1 %东营: 0.1 %中山: 1.2 %中山: 1.2 %佛山: 0.1 %佛山: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 3.0 %北京: 3.0 %南京: 0.3 %南京: 0.3 %南昌: 0.2 %南昌: 0.2 %古吉拉特: 0.6 %古吉拉特: 0.6 %合肥: 0.3 %合肥: 0.3 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.6 %呼和浩特: 0.6 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %大同: 3.0 %大同: 3.0 %大庆: 1.1 %大庆: 1.1 %大连: 0.7 %大连: 0.7 %天津: 0.6 %天津: 0.6 %太原: 0.1 %太原: 0.1 %威海: 0.2 %威海: 0.2 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.2 %宣城: 0.2 %岳阳: 0.3 %岳阳: 0.3 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %广州: 0.6 %广州: 0.6 %廊坊: 0.2 %廊坊: 0.2 %张家口: 1.4 %张家口: 1.4 %徐州: 0.2 %徐州: 0.2 %德阳: 0.7 %德阳: 0.7 %成都: 2.2 %成都: 2.2 %无锡: 0.2 %无锡: 0.2 %昆明: 0.7 %昆明: 0.7 %晋城: 0.1 %晋城: 0.1 %杭州: 0.4 %杭州: 0.4 %武汉: 0.6 %武汉: 0.6 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.1 %泰安: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.3 %深圳: 0.3 %潍坊: 0.3 %潍坊: 0.3 %甘南: 0.1 %甘南: 0.1 %盘锦: 0.3 %盘锦: 0.3 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 20.6 %芒廷维尤: 20.6 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.2 %苏州: 0.2 %荆州: 0.2 %荆州: 0.2 %莫斯科: 0.7 %莫斯科: 0.7 %衡水: 0.1 %衡水: 0.1 %西宁: 7.4 %西宁: 7.4 %西安: 0.7 %西安: 0.7 %西雅图: 0.1 %西雅图: 0.1 %许昌: 0.1 %许昌: 0.1 %贵阳: 0.8 %贵阳: 0.8 %达州: 0.1 %达州: 0.1 %运城: 0.4 %运城: 0.4 %邢台: 0.1 %邢台: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.8 %重庆: 0.8 %银川: 0.1 %银川: 0.1 %长治: 0.2 %长治: 0.2 %青岛: 0.6 %青岛: 0.6 %驻马店: 5.3 %驻马店: 5.3 %其他其他ChinaIndonesiaIran (ISLAMIC Republic Of)Korea Republic of[]上海东莞东营中山佛山兰州北京南京南昌古吉拉特合肥吉林呼和浩特哥伦布嘉兴圣克拉拉大同大庆大连天津太原威海宜昌宣城岳阳巴音郭楞广州廊坊张家口徐州德阳成都无锡昆明晋城杭州武汉沈阳泰安淮安深圳潍坊甘南盘锦绵阳芒廷维尤芝加哥苏州荆州莫斯科衡水西宁西安西雅图许昌贵阳达州运城邢台郑州重庆银川长治青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (788) PDF downloads(225) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return