Volume 34 Issue 6
Nov.  2017
Turn off MathJax
Article Contents
BAI Jianwen, ZHOU Ran, KUANG Dan, GAO Wei, TAO Xiujuan, PENG Rui. Development of Viscosifier Used in CO2 Fracturing Fluid with Sand[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(6): 105-110. doi: 10.3969/j.issn.1001-5620.2017.06.020
Citation: BAI Jianwen, ZHOU Ran, KUANG Dan, GAO Wei, TAO Xiujuan, PENG Rui. Development of Viscosifier Used in CO2 Fracturing Fluid with Sand[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(6): 105-110. doi: 10.3969/j.issn.1001-5620.2017.06.020

Development of Viscosifier Used in CO2 Fracturing Fluid with Sand

doi: 10.3969/j.issn.1001-5620.2017.06.020
  • Received Date: 2017-09-05
  • Publish Date: 2017-11-30
  • Sand carrying in CO2 fracturing fluid has been a problem because of the low viscosity of liquid CO2 which always results in poor fracturedevelopment in fractured formations. One of the key factors in the successful use of CO2 in reservoir fracturing is to increase the viscosity of CO2 used. According to the working mechanisms of Lewis acids and Lewis bases, an olein with Lewis base characteristics was chosen to mix with cyclohexane and chloroform in a ratio of (2.6-4.3) (1.0-2.3) (1.6-2.6) to form a liquid fluorine-free amphiphilic fatty compound, ZNJ, a viscosifier used to enhance the viscosity of CO2. At 20-25℃ and 18-20 MPa, liquid CO2 treated with 7% (vol.%) ZNJ had viscosity of 8.82 mPa·s, as measured on an MARS Ⅱ rheometer. At 10-20 MPa (controlled with a hand pump), 7-18℃, and shearing rate of 170 s-1, percent change in the viscosity of CO2 did not exceed 13%. The viscosifier has been used on 5 wells for 6 times. In the field applications, the concentration of ZNJ was 3%, the proppant used was haydite of 40-70 mesh, the maximum sand volume added in the fracturing fluid for a single fracturing zone was 10 m3, and the average ratio of sand to liquid was 6.1%. The fracturing job was smoothly performed, and the orientation of the fractures developed in the formations was in agreement with the orientation monitored in conventional fracturing jobs. It is concluded that liquid CO2 can be viscosified with olein, cyclohexane and chloroform.

     

  • loading
  • [1]
    郑力会,魏攀峰,张峥,等. 联探并采:非常规天然气勘探开发必由之路[J]. 天然气工业,2017,37(5):126-140.

    ZHENG Lihui,WEI Panfeng,ZHANG Zheng,et al. Joint exploration and development:A self-salvation road to sustainable development of unconventional oil and gas resources[J].Natura Gas Industry,2017,37(5):126-140.
    [2]
    付美龙,胡泽文,黄倩,等. 建南致密砂岩气藏压裂液伤害主控因素[J]. 钻井液与完井液,2016,33(6):116-120.

    FU Meilong,HU Zewen,HUANG Qian,et al.The main controlling factors of reservoir fracturing fluid damage Jiannan tight sandstone gas[J].Drilling Fluid & Completion Fluid,2016,33(6):116-120.
    [3]
    郑力会,翁定为.绒囊暂堵液原缝无损重复压裂技术[J]. 钻井液与完井液,2015,32(3):76-78.

    ZHENG Lihui,WENG Dingwei.Study on repeating fracturing while causing no damage to original fractures[J]. Drilling Fluid & Completion Fluid,2015, 32(3):76-78.
    [4]
    聂帅帅,郑力会,陈必武,等. 郑3X煤层气井绒囊流体重复压裂控水增产试验[J]. 石油钻采工艺,2017,39(3):362-369.

    NIE Shuaishuai,ZHENG Lihui,CHEN Biwu,et al.An experiment on refracturing with fuzzy-ball fluid for water control and stimulation of CBM Well Zheng 3X[J].Oil Drilling & Production technology,2017,39(3):362-369.
    [5]
    郑力会,崔金榜,聂帅帅,等. 郑X井重复压裂非产水煤层绒囊流体暂堵转向试验[J]. 钻井液与完井液, 2016,33(5):103-108.

    ZHENG Lihui,CUI Jingbang,NIE Shuaishuai,et al. Temporary plugging diverting test with fuzzy ball fluids in non-water producing coal beds in refracturing well Zheng-X[J]. Drilling Fluid & Completion Fluid,2016,33(5):103-108.
    [6]
    吴新民,赵建平,陈亚联,等. 压裂返排液循环再利用影响因素[J]. 钻井液与完井液,2015,32(3):81-85.

    WU Xinmin,ZHAO Jianping,CHEN Yalian,et al. Study on recycling of fracturing waste fluid[J].Drilling Fluid & Completion Fluid,2015,32(3):81-85.
    [7]
    王兴文,刘林,任山. 致密砂岩气藏压裂液高效返排技术[J]. 钻采工艺,2010,33(6):52-55.

    WANG Xingwen,LIU Lin,REN Shan.High effective fracturing fluid flowback Technology for tight sandstone gas reservoir[J]. Drilling & Production Technology, 2010,33(6):52-55.
    [8]
    宋振云,苏伟东,杨延增,等.CO2干法加砂压裂技术研究与实践[J]. 天然气工业,2014,36(6):55-59.

    SONG Zhenyun,SU Weidong,YANG Yanzeng,et al. Research and test on CO2 dry fracturing fluid system[J].Oil Drilling & Production Technology,2014,36(6):55-59.
    [9]
    杨发,汪小宇,李勇. 二氧化碳压裂液研究及应用现状[J]. 石油化工应用,2014,33(12):9-12.

    YANG Fa,WANG Xiaoyu,LI Yong.Research and application status of carbon dioxide fracturing fluid[J]. Petrochemical Industry Application,2014,33(12):9-12.
    [10]
    苏伟东,宋振云,马得华,等. 二氧化碳干法压裂技术在苏里格气田的应用[J].钻采工艺,2011,(4):39-40,44.

    SU Weidong,SONG Zhenyun,MA Dehua,et al. Application of CO2 fracturing technology in sulige gas field[J].Drilling & Production Technology,2011,(4):39-40,44.
    [11]
    张健,徐冰,崔明明. 纯液态二氧化碳压裂技术研究综述[J]. 绿色科技,2014(4):200-203,206.

    ZHANG Jian,XU Bing,CUI Mingming.Review of fracturing technology of pure liquid carbon dioxide[J]. Journal of Green Science and Technology,2014(4):200-203,206.
    [12]
    刘巍. 超临界CO2增稠剂研究进展[J]. 断块油气田, 2012,19(5):658-661.

    LIU Wei.Research advance in supercritical CO2 thickeners[J].Fault-Block Oil & Gas Field,2012,19(5):658-661.
    [13]
    孙宝江,孙文超. 超临界CO2增黏机制研究进展及展望[J]. 中国石油大学学报(自然科学版),2015,39(3):76-83. SUN Baojiang,SUN Wenchao.Research progress and prospectives of supercritical CO2 thickening technology[J]. Journal of China University of Petroleum,2015,39(3):76-83.
    [14]
    KAZARIAN S G,VINCENT M F,F V B,et al. Specific intermolecular interaction of carbon dioxide with polymers[J].J.am.chem.soc,1996,118(7):1729-1736.
    [15]
    RAVEENDRAN P,WALLEN S L,COOPERATIVE C H. O hydrogen bonding in CO2-lewis base complexes:implications for solvation in supercritical CO2[J]. Journal of the American Chemical Society,2002,124(42):12590.
    [16]
    TSUKAHARA T,KAYAKI Y,IKARIYA T,et al. 13C NMR cpectroscopic evaluation of the affinity of carbonyl compounds for carbon dioxide under supercritical conditions[J].Angewandte Chemie International Edition, 2004,43:3719-3722.
    [17]
    邹丽,刘学斌,田瑞英. 油酸甘油酯的制备[J]. 辽宁化工, 2011,30(2):77-78.

    ZOU Li,LIU Xuebin,TIAN Ruiying.Preparation of glycerol monooleate[J].Liaoning Chemical Industry, 2011,30(2):77-78.
    [18]
    赵雄虎,韩斅,徐同台. 微流变学研究钻井液静态黏弹性特征[J]. 钻井液与完井液,2015,32(1):7-10.

    ZHAO Xionghu,Han Xiao,Xu Tongtai.Study on Static viscoelastic characteristics of drilling fluid using microrheology[J].Drilling Fluid & Completion Fluid,2015,32(1):7-10.
    [19]
    崔伟香,邱小惠.100% 液态CO2增稠压裂液流变性能[J]. 钻井液与完井液,2016,33(2):101-105.

    CUI Weixiang,QIU Xiaohui.Rheology of thickened 100% liquid CO2 fracturing fluid[J].Drilling Fluid & Completion Fluid,2016,33(2):101-105.
    [20]
    汪小宇,宋振云,王所良.CO2干法压裂液体系的研究与试验[J]. 石油钻采工艺,2014,36(6):69-73.

    WANG Xiaoyu,SONG Zhenyun,WANG Suoliang. Research and test on CO2 dry fracturing fluid system[J]. Oil Drilling & Production Technology,2014,36(6):69-73.
    [21]
    张树立,韩增平,潘加东.CO2无水压裂工艺及核心设备综述[J]. 石油机械,2016,44(8):79-84.

    ZHANG Shuli,HAN Zengping,PAN Jiadong. Review of CO2 non-aqueous fracturing process and key equipment[J].China Petroleum Machinery,2016,44(8):79-84.
    [22]
    容娇君,李彦鹏,徐刚,等. 微地震裂缝检测技术应用实例[J]. 石油地球物理勘探,2015,50(5):919-924.

    RONG Jiaojun,LI Yanpeng,XU Gang,et al.Fracture detection with microseismic[J].OGP,2015,50(5):919-924.
    [23]
    唐杰,方兵,蓝阳,等. 压裂诱发的微地震震源机制及信号传播特性[J]. 石油地球物理勘探,2015,50(4):643-649.

    TANG Jie,FANG Bing,LAN Yang,et al.Focal mechanism of micro-seismic induced by hydrofracture and its signal propagation characteristics[J].OGP,2015, 50(4):643-649.
    [24]
    钟尉,朱思宇. 地面微地震监测技术在川南页岩气井压裂中的应用[J]. 油气藏评价与开发,2014(6):71-74. ZHONG Wei,ZHU Siyu.Application of surface microseismic monitoring technology in shale gas well fracturing of South Sichuan[J]. Reservoir Evaluation and Development,2014

    (6):71-74.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (523) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return