Volume 34 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
YANG Zengmin, ZHUANG Jianshan, HE Jianyong, GUO Chunlong, CHU Junjie, BI Yi. A New Geopolymer Well Cementing Gelled Material and Analysis of Its Resistance to Salt Attack[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(5): 79-85. doi: 10.3969/j.issn.1001-5620.2017.05.015
Citation: YANG Zengmin, ZHUANG Jianshan, HE Jianyong, GUO Chunlong, CHU Junjie, BI Yi. A New Geopolymer Well Cementing Gelled Material and Analysis of Its Resistance to Salt Attack[J]. DRILLING FLUID & COMPLETION FLUID, 2017, 34(5): 79-85. doi: 10.3969/j.issn.1001-5620.2017.05.015

A New Geopolymer Well Cementing Gelled Material and Analysis of Its Resistance to Salt Attack

doi: 10.3969/j.issn.1001-5620.2017.05.015
  • Received Date: 2017-04-15
  • Publish Date: 2017-09-30
  • A geopolymer has been proposed to replace the low corrosion resistance gelled material used in cement slurries for cementing deep high salinity wells. Experiments have been done to study the resistance of the geopolymer to salt attack. A mixture of fly ash, metakaolin based geopolymer and class G cement was cured in salt solutions of different salinities for 28 d, and the compressive strength of the mixture was measured. It was found that with an increase in salinity, the loss of the compressive strength of the common set cement is increasing, while the compressive strength of the mixture is increasing with increase in salinity to the contrary. Element analysis with XRF, mineral analysis with XRD and analysis of acidity and alkalinity showed that ion exchange in saltwater environment remarkably changes the hydration environment and hydration product components of cement, resulting in remarkable strength loss of the cement. For the geo-polymerization of geopolymer, however, the effect of the ion exchange process is quite weak. Morphology analysis using SEM demonstrated that in salt water, geopolymer can form much denser microstructure, which is considered to be the main reason for the geopolymer to have an enhanced strength. This study showed that a geopolymer at its early age has superior resistance to salt attack, and can be used to replace cement in cementing deep high salinity wells after being verified with more experiments.

     

  • loading
  • [1]
    杨贤有. 保护油气层钻井液现状与发展趋势[J]. 钻井液与完井液,2001,17(1):25-30.

    YANG Xianyou. Current situation and development of drilling fluids for protection of hydrocarbon reservoir[J]. Drilling Fluid & Completion Fluid, 2001, 17(1):25-30.
    [2]
    王关清, 陈元顿, 周煜辉. 深探井和超深探井钻井的难点分析和对策探讨[J]. 石油钻采工艺, 1998,20(1):1-7.

    WANG Guanqiang, CHEN Yuandun, ZHOU Yuhui. Analysis and discussion for the key drilling technology of deep and ultra-deep exploration well[J]. Petroleum Science and Technology, 1998,20(1):1-7.
    [3]
    李中. 南海高温高压气田开发钻完井关键技术现状及展望[J]. 石油钻采工艺,2016,38(6):730-736.

    LI Zhong. Status and prospect of key drilling and completion technologies for the development of HTHP gasfield in South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6):730-736.
    [4]
    黄熠. 南海高温高压勘探钻井技术现状及展望[J]. 石油钻采工艺,2016,38(6):737-745.

    HUANG Yi. Drilling technology for HTHP exploration in South China Sea and its prospect[J]. Oil Drilling & Production Technology, 2016, 38(6):737-745.
    [5]
    罗黎敏, 黄熠, 齐美胜, 等. 南海西部高温高压小井眼钻井技术[J]. 石油钻采工艺,2016,38(6):757-761.

    LUO Limin, HUANG Yi, QI Meisheng, et al. Drilling technology for HTHP slim hole in western South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6):757-761.
    [6]
    聂臻,许岱文,邹建龙,等. HFY油田高压盐膏层固井技术[J]. 石油钻采工艺,2015,37(6):39-43.

    NIE Zhen,XU Daiwen, ZOU Jianlong, et al.Cementing technology for high-pressure salt-anhydrate bed in HFY Oilfield[J]. Oil Drilling & Production Technology, 2015, 37(6):39-43.
    [7]
    张金成, 牛新明, 张进双. 超深井钻井技术研究及工业化应用[J]. 探矿工程(岩土钻掘工程), 2015, 42(1):3-11. ZHANG Jincheng, NIU Xinming, ZHANG Jinshuang. Research and industrial application of drilling technology of ultra-deep wells[J]. Exploration Engineerign (Rock & Soil Drilling and Tunneling), 2015, 42(1):3-11.
    [8]
    杨智光, 崔海清,肖志兴. 深井高温条件下油井水泥强度变化规律研究[J]. 石油学报, 2008, 29(3):435-437.

    YANG Zhiguang, CUI Haiqing, XIAO Zhixing. Change of cement stone strength in the deep high temperature oil well[J]. Acta Petrolei Sinica, 2008,29(3):435-437.
    [9]
    孙伟, 缪昌文. 现代混凝土理论与技术[M]. 北京:科学出版社,2012. SUN Wei, MIAO Changwen. Theory and technology of modern concrete[M]. Beijing:Science Press, 2012.
    [10]
    DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. J Therm Anal, 1989, 35(2):429-431.
    [11]
    DAVIDOVITS J, COMRIE DC, PATERSON JH, et al. Geopolymeric concretes for environmental protection[J]. Concrete International,1990, 12(7):30-39.
    [12]
    DUXSON P, PROVIS J L, LUKEY G C,et al. The role of inorganic polymer technology in the development of ‘green concrete’[J]. Cem Concr Res. 2007,37(12):1590-1597.
    [13]
    DETPHAN S, CHINDAPRASIRT P. Preparation of fly ash and rice husk ash geopolymer[J]. International Journal of Minerals Metallurgy and Materials. 2009,16(6):720-726.
    [14]
    FERNANDEZ-JIMENEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement:a descriptive model[J]. Cem Concr Res, 2005, 35(6):1204-1209.
    [15]
    JIAN HE, JIANHONG ZHANG, YUZHEN YU, et al. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture:A comparative study[J]. Construction and Building Materials,30(2012):80-91.
    [16]
    KUMAR A, KUMAR S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization[J]. Constr Build Mater, 2013,38:865-71.
    [17]
    PACHECO-TORGAL F, CASTRO-GORNES JP, JALALI S. Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment[J]. Constr Build Mater, 2008,22(3):154-61.
    [18]
    BREW DRM, MACKENZIE KJD. Geopolymer synthesis using silica fume and sodium aluminate[J]. Journal of Materials Science,2007,42(11):3990-3.
    [19]
    HAJIMOHAMMADI A, PROVIS JL, VAN DEVENTER JSJ. One-Part Geopolymer Mixes from Geothermal Silica and Sodium Aluminate[J]. Ind Eng Chem Res,2008,47(23):9396-405.
    [20]
    DUXSON P, FERNANDEZ-JIMENEZ A, PROVIS JL, et al. Geopolymer technology:the current state of the art[J]. Journal of Materials Science,2007,42(9):2917-33.
    [21]
    BUCHWALD A, HOHMANN M, KAPS C,et al. Stabilised foam clay material with high performance thermal insulation properties[J]. CFI-Ceram Forum Int, 2004,81(8):E39-E42.
    [22]
    BAKHAREV T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cem Concr Res,2005,35(6):1233-46.
    [23]
    BAKHAREV T. Resistance of geopolymer materials to acid attack[J]. Cem Concr Res,2005,35(4):658-70.
    [24]
    MALONE PG, RANDALL CA JR, KIRKPATRICK T. Potential applications of alkali-activated alumino-silicate binders in military opperations[R]. Report WES/MP/GL-85-15:US Army Corps of Engineers, 1985.
    [25]
    GIANCASPRO J, BALAGURU PN, LYON RE. Use of inorganic polymer to improve the fire response of balsa sandwich structures[J]. J Mater Civ Eng, 2006,18(3):390-7.
    [26]
    LYON RE, BALAGURU PN, FODEN A, et al. Fire-resistant aluminosilicate composites[J]. Fire and Materials,1997,212(2):67-73.
    [27]
    G O R E T T A K, F U L L E R J, C R AWL E Y E. Geopolymers[M]. Air Force Office of Scientific Research, 2006.
    [28]
    BALAGURU P. Geopolymer for protective coating of transportation infrastructures[J]. Contraction, 1998.
    [29]
    BELL JL, DRIEMEYER PE, KRIVEN WM. Formation of ceramics from metakaolin-based geopolymers. part Ⅱ:k-based geopolymer[J]. J Am Ceram Soc, 2009,92(3):607-615.
    [30]
    ZHANG SZ, GONG KC, LU HW. Novel modification method for inorganic geopolymer by using water soluble organic polymers[J]. Mater Lett, 2004,58(7-8):1292-1296.
    [31]
    ASTM D618-15. Standard specification for coal fly ash and raw of calcined natural pozzolan for use in concrete[S]. West Conshohocken, PA:ASTM international, 1994.
    [32]
    ASTM. D422-63, Standard test method for particlesize analysis of soils. Book of Standards:0408[S]. West Conshohocken, PA:American Society for Testing and Materials, ASTM International, 2007.
    [33]
    ATKINSON M J, BINGMAN C. Elemental composition of commercial seasalts[J]. Journal of Aquariculture and Aquatic Sciences, 1997, 8(2).
    [34]
    GUO X, SHI H,DICK W A. Compressive strength and microstructural characteristics of class C fly ash geopolymer[J]. Cem. Concr. Compos.,2010,32(2), 142-147.
    [35]
    ASTM C39/C39M-15a. Standard test method for compressive strength of cylindrical concrete specimens[S]. West Conshohocken, PA:ASTM international, 2015.
    [36]
    ASTM D1293-12. Standard test methods for pH of water[S]. West Conshohocken, PA:ASTM international, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (453) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return