Volume 33 Issue 6
Nov.  2016
Turn off MathJax
Article Contents
ZHU Yimei, FANG Bo, LU Yongjun, QIU Xiaohui. Study on the Rheology and Drag Reducing Performance of Epoxy Chloropropane Modifed Cellulose Solution[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 95-100. doi: 10.3969/j.issn.1001-5620.2016.06.017
Citation: ZHU Yimei, FANG Bo, LU Yongjun, QIU Xiaohui. Study on the Rheology and Drag Reducing Performance of Epoxy Chloropropane Modifed Cellulose Solution[J]. DRILLING FLUID & COMPLETION FLUID, 2016, 33(6): 95-100. doi: 10.3969/j.issn.1001-5620.2016.06.017

Study on the Rheology and Drag Reducing Performance of Epoxy Chloropropane Modifed Cellulose Solution

doi: 10.3969/j.issn.1001-5620.2016.06.017
  • Received Date: 2016-09-23
  • Publish Date: 2016-11-30
  • To improve the viscoelasticity of carboxymethyl hydroxyethyl cellulose (CMHEC) solution to widen its feld of application, a water soluble EPIC-CMHEC has been developed by reacting epoxychloropropane (EPIC) with CMHEC. EPIC-CMHEC and CMHEC water solutions were studied for their rheology (flow curve, viscoelasticity, constitutive equation, and thixotropy etc.) and drag reducing performance. The study has shown that compared with that of the CMHEC solution, the viscosity of the EPIC-CMHEC solution was notably increased. Water solution of 3 g/L EPIC-CMHEC had viscosity of 56.6 mPaf s, 2.1 times of the viscosity of a 3 g/L CMHEC solution (18.3 mPaf s), and the elasticity of the EPIC-CMHEC solution was better than that of the CMHEC solution. Sheared at 170 s-1, when temperature was increased from 20℃ to 80℃, the viscosity of 0.3% EPIC-CMHEC solution was 19 mPaf s, still higher than the viscosity of a 0.3% CMHEC solution at 25℃. EPIC-CMHEC solution had better drag reducing performance. The maximum percentages of drag reduction of 0.10% EPIC-CMHEC solution and CMHEC solution were 72.70% and 68.41%, respectively. The flow curves of the EPIC-CMHEC solution and the CMHEC solution can be expressed with cross constitutive equation. EPIC-CMHEC is expected to fnd its use in oil/gas development and where drag reducing is required.

     

  • loading
  • [1]
    金雷平. 耐高温黏弹性表面活性剂压裂液体系及流变学研究[D]. 华东理工大学, 2015. JIN Leiping.Study on high temperature viscoelastic surfactant fracturing fluid and its rheological properties[D].East China University of Science and Technology, 2015.
    [2]
    明华, 舒玉华, 卢拥军, 等. 一种速溶无残渣纤维素压裂液[J]. 油田化学, 2014, 31(4):492-496.

    MING Hua, SHU Yuhua, LU Yongjun, et al.A cellulose fracturing fluid with instant solution and nonresidue[J].Oilfield Chemistry, 2014, 31(4):492-496.
    [3]
    王煦, 杨永钊, 蒋尔梁, 等. 压裂液用纤维类物质的研究进展[J]. 西南石油大学学报(自然科学版), 2010, 32(3):141-144. WANG Xu, YANG Yongzhao, JIANG Erliang, et al.Research progress of fibrous substance used in fracturing fluid[J].Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(3):141-144.
    [4]
    GUO J, MA J, ZHAO Z H, et al.Effect of fiber on the rheological property of fracturing fluid[J].Journal of Natural Gas Science and Engineering, 2015, 23(21):232-244.
    [5]
    MA M, FANG B, Lu Y J, et al.Intrinsic rheokinetics on gelation process of hydrophobic amphoteric cellulose[J].Journal of Dispersion Science and Technology, 2015, 37(8):1076-1082.
    [6]
    王丽伟, 卢拥军, 刘玉婷, 等. 羟乙基羧甲基纤维素与金属离子交联作用机理[J]. 科学技术与工程, 2015, 15(33):166-169.

    WANG Liwei, LU Yongjun, LIU Yuling, et al. Crosslinking mechanism of hydroxyethyl carboxymethyl cellulose and metal lons[J].Science Technology and Engineering, 2015, 15(33):166-169.
    [7]
    ZHAO Z H, MA J, GUO J C, et al.Experimental investigation of rheological properties of fiber-laden crosslinked fracturing fluids[J].Journal of Natural Gas Science and Engineering, 2016, 32(2):28-34.
    [8]
    罗成成, 王晖, 陈勇. 纤维素的改性及应用研究进展[J]. 化工进展, 2015, 34(3):767-773.

    LUO Chengcheng, WANG Hui, CHEN Yong.Progress in modification of cellulose and application[J].Chemical Industry and Engineering Progress, 2015, 34(3):767-773.
    [9]
    鹿保鑫, 王喜刚, 周睿, 等. 稻草纤维素醚化改性及其结构表征[J]. 黑龙江八一农垦大学学报, 2010, 22(4):71-76.

    LU Baoxin, WANG Xigang, ZHOU Rui, et al. Etherifying modification and structure characterizations of carboxymethyl cellulose[J].Journal of Heilongjiang Bayi Agricultural University, 2010, 22(4):71-76.
    [10]
    段瑶瑶, 明华, 代东每, 等. 纤维素压裂液在苏里格气田的应用[J]. 特种油气藏, 2014, 21(6):123-125.

    DUAN Yaoyao, MING Hua, DAI Donghai, et al. Application of cellulose fracturing fluid in sulige gas field[J].Special Oil and Gas Reservoirs, 2014, 21(6):123-125.
    [11]
    邵自强, 杨斐霏, 王文俊, 等. 羧甲基纤维素的环氧氯丙烷交联改性研究[J]. 纤维素科学与技术, 2007, 15(2):26-29.

    SHAO Ziqiang, YANG Feiwen, WANG Wenjun, et al.Study on CMC crosslinked by 3-chloro-1, 2-epoxypropane[J].Journal Cellulose Science and Technology, 2007, 15(2):26-29.
    [12]
    梁凯, 杜予民, 李艳, 等. 三偏磷酸钠交联壳聚糖膜的制备及其性能研究[J]. 分析科学学报, 2008, 24(2):136-140.

    LIANG Kai, DU Yumin, LI Yan, et al.The preparation and properties of chitosan films crosslinked by sodium trimetaphosphate[J].Journal of Analytical Science, 2008, 24(2), 136-140.
    [13]
    刘茹. 交联黄原胶的制备及其溶液流变性[D]. 山东大学, 2015. LIU Ru.Synthesis and solution rheology of crosslinked xanthan gum[D].Shandong University, 2015.
    [14]
    李秉正. 三偏磷酸钠交联淀粉微球的制备与性能研究[D]. 中国农业大学, 2006. LI Binzheng.Preparation and properties of trisodium trimetaphosphate crosslinked starch microspheres[D]. China Agricultural University, 2006.
    [15]
    李芳良, 何建华, 麻昌爱. 三偏磷酸钠制备木薯交联淀粉的研究[J]. 广西轻工业, 2007, 23(3):18-19.

    LI Fangliang, HE Jianhan, MA Changai.Study on sodium trimetaphosphate crosslinked cassava starch[J].Guangxi Journal of Light Industry, 2007, 23(3):18-19.
    [16]
    杨婷婷, 李海平, 侯万国. 环氧氯丙烷交联黄原胶溶液的流变及抗温性能[J]. 高分子材料科学与工程, 2015, 31(5):39-43.

    YANG Tingting, LI Haiping, HOU Wangguo. Rheological properties and temperature resistance of epichlorohydrin crosslinked xanthan gum aqueous solutions[J].Polymer Materials Science and Engineering, 2015, 31(5):39-43.
    [17]
    袁彦超, 陈炳稔, 王瑞香. 甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能[J]. 高分子材料科学与工程, 2004, 20(1):53-57.

    YUAN Yanchao, CHEN Binniang, WANG Ruixiang. Studies of properties and preparation of chitosan resin crosslinked by formaldehyde and epichlorohydrin[J]. Polymer Materials Science and Engineering, 2004, 20(1):53-57.
    [18]
    徐德增, 李丹, 徐磊. 戊二醛交联改性再生纤维素纤维的研究[J]. 合成纤维工业, 2012, 35(4):27-29.

    XU Dezeng, LI Dan, XU Lei.Crosslinking modification of regenerated cellulose fiber by glutaraldehyde[J].China Synthetic Fiber Industry, 2012, 35(4):27-29.
    [19]
    王雪娟, 唐屹, 吴炜誉, 等. 戊二醛交联胶原蛋白/PVA复合纤维的结构与性能[J]. 纺织学报, 2007, 28(11):13-16.

    WANG Xuejuan, TANG Yi, WU Weiyu, et al. Research on collagen/PVA composite fibers with glutaraldehyde as cross-linker[J].Journal of Textile Research, 2007, 28(11):13-16.
    [20]
    HARDING M J, GAINES R C, GESS J M.Method for preparation of cationic cellulose:US, US4505775[P]. 1985.
    [21]
    LUO M, JEWELL R A, NEOGI A N.Method for production of cellulose derivatives and the resulting products:US, US 6531593 B1[P].2003.
    [22]
    卢拥军, 方波, 房鼎业, 等. 黏弹性表面活性剂胶束体系及其流变特性[J]. 油田化学, 2003, 20(3):291-294.

    LU Yongjun, FANG Bo, FANG Dingye, et al. Viscoelastic surfactant micelle systems and their rheological properties[J].Oilfield Chemistry,2003,20(3):291-294.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (683) PDF downloads(185) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return